At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To tackle this problem step-by-step, let's analyze the given sequence [tex]\( d_n = \ln \left( 4^n \right) - \ln (n!) \)[/tex]:
1. Rewrite the Sequence:
The sequence can be rewritten as:
[tex]\[ d_n = \ln \left( \frac{4^n}{n!} \right) \][/tex]
This simplification helps in understanding the behavior of [tex]\( d_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity.
2. Exponential Function and Limit:
We can use the fact that the exponential function [tex]\( e^x \)[/tex] is continuous. Therefore, we can find the limit of [tex]\( e^{d_n} \)[/tex] and use it to find the limit of [tex]\( d_n \)[/tex]. This means:
[tex]\[ e^{d_n} = \frac{4^n}{n!} \][/tex]
3. Evaluating [tex]\( \lim_{n \to \infty} e^{d_n} \)[/tex]:
Consider the behavior of [tex]\( \frac{4^n}{n!} \)[/tex] as [tex]\( n \)[/tex] goes to infinity. Using properties from analysis, such as Stirling's approximation, we know that:
[tex]\[ \lim_{n \to \infty} \frac{4^n}{n!} = 0 \][/tex]
This is because [tex]\( n! \)[/tex] grows much faster than [tex]\( 4^n \)[/tex].
4. Connecting [tex]\( e^{d_n} \)[/tex] and [tex]\( d_n \)[/tex]:
Since [tex]\( \lim_{n \to \infty} e^{d_n} = 0 \)[/tex], we can use the fact that if [tex]\( \lim_{n \to \infty} e^{d_n} = 0 \)[/tex], then [tex]\( \lim_{n \to \infty} d_n = -\infty \)[/tex]. The exponential function [tex]\( e^x \)[/tex] approaches 0 only when [tex]\( x \)[/tex] approaches negative infinity.
5. Conclusion:
Therefore, the limit of [tex]\( d_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \to \infty} d_n = -\infty \][/tex]
Since [tex]\( d_n \)[/tex] approaches negative infinity, it implies that the sequence does not converge to a finite value but rather diverges to negative infinity.
Thus, the correct conclusion for the sequence [tex]\( d_n \)[/tex] is:
[tex]\[ \lim_{n \to \infty} d_n = -\infty \][/tex]
1. Rewrite the Sequence:
The sequence can be rewritten as:
[tex]\[ d_n = \ln \left( \frac{4^n}{n!} \right) \][/tex]
This simplification helps in understanding the behavior of [tex]\( d_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity.
2. Exponential Function and Limit:
We can use the fact that the exponential function [tex]\( e^x \)[/tex] is continuous. Therefore, we can find the limit of [tex]\( e^{d_n} \)[/tex] and use it to find the limit of [tex]\( d_n \)[/tex]. This means:
[tex]\[ e^{d_n} = \frac{4^n}{n!} \][/tex]
3. Evaluating [tex]\( \lim_{n \to \infty} e^{d_n} \)[/tex]:
Consider the behavior of [tex]\( \frac{4^n}{n!} \)[/tex] as [tex]\( n \)[/tex] goes to infinity. Using properties from analysis, such as Stirling's approximation, we know that:
[tex]\[ \lim_{n \to \infty} \frac{4^n}{n!} = 0 \][/tex]
This is because [tex]\( n! \)[/tex] grows much faster than [tex]\( 4^n \)[/tex].
4. Connecting [tex]\( e^{d_n} \)[/tex] and [tex]\( d_n \)[/tex]:
Since [tex]\( \lim_{n \to \infty} e^{d_n} = 0 \)[/tex], we can use the fact that if [tex]\( \lim_{n \to \infty} e^{d_n} = 0 \)[/tex], then [tex]\( \lim_{n \to \infty} d_n = -\infty \)[/tex]. The exponential function [tex]\( e^x \)[/tex] approaches 0 only when [tex]\( x \)[/tex] approaches negative infinity.
5. Conclusion:
Therefore, the limit of [tex]\( d_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \to \infty} d_n = -\infty \][/tex]
Since [tex]\( d_n \)[/tex] approaches negative infinity, it implies that the sequence does not converge to a finite value but rather diverges to negative infinity.
Thus, the correct conclusion for the sequence [tex]\( d_n \)[/tex] is:
[tex]\[ \lim_{n \to \infty} d_n = -\infty \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.