Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

What is the sum of the polynomials?

[tex]\[
\begin{array}{r}
11x^2 - 5 \\
+\quad (x + 4) \\
\hline
\end{array}
\][/tex]

A. [tex]\(10x^2 - 9\)[/tex]
B. [tex]\(11x^2 - x - 9\)[/tex]
C. [tex]\(11x^2 + x - 1\)[/tex]
D. [tex]\(12x^2 - 1\)[/tex]


Sagot :

To find the sum of the given polynomials, you will need to add the corresponding coefficients of each term from both polynomials.

First, let's rewrite the polynomials so that the terms are properly aligned:

1. [tex]\(11x^2 - 5 + x + 4\)[/tex]:
[tex]\[ 11x^2 + 1x - 1 \][/tex]
(This results from combining the constant terms [tex]\(-5\)[/tex] and [tex]\(4\)[/tex] to get [tex]\(-1\)[/tex].)

2. [tex]\(10x^2 - 9\)[/tex]:
[tex]\[ 10x^2 + 0x - 9 \][/tex]
(Here, we have a placeholder for the [tex]\(x\)[/tex] term, which is 0, as the polynomial doesn't have a term with [tex]\(x\)[/tex].)

Now, we add the corresponding coefficients:

- The coefficient of [tex]\(x^2\)[/tex] is:
[tex]\[ 11 + 10 = 21 \][/tex]

- The coefficient of [tex]\(x\)[/tex] is:
[tex]\[ 1 + 0 = 1 \][/tex]

- The constant term (coefficient of [tex]\(x^0\)[/tex]) is:
[tex]\[ -1 + (-9) = -10 \][/tex]

Therefore, the resulting polynomial after summing up the corresponding terms is:
[tex]\[ 21x^2 + 1x - 10 \][/tex]

In summary, the sum of the given polynomials is:
[tex]\[ 21x^2 + 1x - 10 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.