Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To answer the questions, let's analyze the data in the table and the given temperature changes in detail.
### First Scenario: Room Temperature Increases from [tex]\( 25^{\circ} C \)[/tex] to [tex]\( 33^{\circ} C \)[/tex]
We need to determine which substance changes from a solid to a liquid as the temperature in the room increases from [tex]\( 25^{\circ} C \)[/tex] to [tex]\( 33^{\circ} C \)[/tex].
From the given table:
- Gallium (Ga) has a melting point of [tex]\( 30^{\circ} C \)[/tex].
- Gold (Au) has a melting point of [tex]\( 1064^{\circ} C \)[/tex].
- Methane (CH[tex]\(_4\)[/tex]) has a melting point of [tex]\( -183^{\circ} C \)[/tex].
- Nitrogen (N[tex]\(_2\)[/tex]) has a melting point of [tex]\( -210^{\circ} C \)[/tex].
In the range of [tex]\( 25^{\circ} C \)[/tex] to [tex]\( 33^{\circ} C \)[/tex]:
- Gallium (Ga) has a melting point of [tex]\( 30^{\circ} C \)[/tex], which falls within this range. Therefore, Gallium changes from a solid to a liquid.
Thus, the answer is:
When the temperature in a room increases from [tex]\( 25^{\circ} C \)[/tex] to [tex]\( 33^{\circ} C \)[/tex], Gallium (Ga) changes from a solid to a liquid.
### Second Scenario: Methane and Nitrogen Cooled from [tex]\( -170^{\circ} C \)[/tex] to [tex]\( -200^{\circ} C \)[/tex]
We need to determine the state changes of methane and nitrogen when cooled from [tex]\( -170^{\circ} C \)[/tex] to [tex]\( -200^{\circ} C \)[/tex].
From the given table:
- Methane (CH[tex]\(_4\)[/tex]) has a melting point of [tex]\( -183^{\circ} C \)[/tex] and a boiling point of [tex]\( -162^{\circ} C \)[/tex]. At [tex]\( -170^{\circ} C \)[/tex], methane is in gas form (above its boiling point [tex]\( -162^{\circ} C \)[/tex]). When cooled below [tex]\( -183^{\circ} C \)[/tex], it freezes.
- Nitrogen (N[tex]\(_2\)[/tex]) has a melting point of [tex]\( -210^{\circ} C \)[/tex] and a boiling point of [tex]\( -196^{\circ} C \)[/tex]. At [tex]\( -170^{\circ} C \)[/tex], nitrogen is in liquid form. When cooled below [tex]\( -196^{\circ} C \)[/tex], it condenses to liquid if it is in gas form (if cooled further below [tex]\( -210^{\circ} C \)[/tex] would freeze).
Thus, the answer is:
When methane and nitrogen are cooled from [tex]\( -170^{\circ} C \)[/tex] to [tex]\( -200^{\circ} C \)[/tex], the methane freezes and the nitrogen condenses.
### Third Scenario: Gold Heated to [tex]\( 2856^{\circ} C \)[/tex]
We need to determine the state change of gold when heated to [tex]\( 2856^{\circ} C \)[/tex].
From the given table:
- Gold (Au) has a boiling point of [tex]\( 2856^{\circ} C \)[/tex].
When gold reaches its boiling point temperature of [tex]\( 2856^{\circ} C \)[/tex], it changes from a liquid to a gas.
Thus, the answer is:
When gold is heated to [tex]\( 2856^{\circ} C \)[/tex], it changes from a liquid to a gas.
Combining all the answers together, we have:
```
('Gallium (Ga)', 'freezes', 'condenses', 'gas')
```
### First Scenario: Room Temperature Increases from [tex]\( 25^{\circ} C \)[/tex] to [tex]\( 33^{\circ} C \)[/tex]
We need to determine which substance changes from a solid to a liquid as the temperature in the room increases from [tex]\( 25^{\circ} C \)[/tex] to [tex]\( 33^{\circ} C \)[/tex].
From the given table:
- Gallium (Ga) has a melting point of [tex]\( 30^{\circ} C \)[/tex].
- Gold (Au) has a melting point of [tex]\( 1064^{\circ} C \)[/tex].
- Methane (CH[tex]\(_4\)[/tex]) has a melting point of [tex]\( -183^{\circ} C \)[/tex].
- Nitrogen (N[tex]\(_2\)[/tex]) has a melting point of [tex]\( -210^{\circ} C \)[/tex].
In the range of [tex]\( 25^{\circ} C \)[/tex] to [tex]\( 33^{\circ} C \)[/tex]:
- Gallium (Ga) has a melting point of [tex]\( 30^{\circ} C \)[/tex], which falls within this range. Therefore, Gallium changes from a solid to a liquid.
Thus, the answer is:
When the temperature in a room increases from [tex]\( 25^{\circ} C \)[/tex] to [tex]\( 33^{\circ} C \)[/tex], Gallium (Ga) changes from a solid to a liquid.
### Second Scenario: Methane and Nitrogen Cooled from [tex]\( -170^{\circ} C \)[/tex] to [tex]\( -200^{\circ} C \)[/tex]
We need to determine the state changes of methane and nitrogen when cooled from [tex]\( -170^{\circ} C \)[/tex] to [tex]\( -200^{\circ} C \)[/tex].
From the given table:
- Methane (CH[tex]\(_4\)[/tex]) has a melting point of [tex]\( -183^{\circ} C \)[/tex] and a boiling point of [tex]\( -162^{\circ} C \)[/tex]. At [tex]\( -170^{\circ} C \)[/tex], methane is in gas form (above its boiling point [tex]\( -162^{\circ} C \)[/tex]). When cooled below [tex]\( -183^{\circ} C \)[/tex], it freezes.
- Nitrogen (N[tex]\(_2\)[/tex]) has a melting point of [tex]\( -210^{\circ} C \)[/tex] and a boiling point of [tex]\( -196^{\circ} C \)[/tex]. At [tex]\( -170^{\circ} C \)[/tex], nitrogen is in liquid form. When cooled below [tex]\( -196^{\circ} C \)[/tex], it condenses to liquid if it is in gas form (if cooled further below [tex]\( -210^{\circ} C \)[/tex] would freeze).
Thus, the answer is:
When methane and nitrogen are cooled from [tex]\( -170^{\circ} C \)[/tex] to [tex]\( -200^{\circ} C \)[/tex], the methane freezes and the nitrogen condenses.
### Third Scenario: Gold Heated to [tex]\( 2856^{\circ} C \)[/tex]
We need to determine the state change of gold when heated to [tex]\( 2856^{\circ} C \)[/tex].
From the given table:
- Gold (Au) has a boiling point of [tex]\( 2856^{\circ} C \)[/tex].
When gold reaches its boiling point temperature of [tex]\( 2856^{\circ} C \)[/tex], it changes from a liquid to a gas.
Thus, the answer is:
When gold is heated to [tex]\( 2856^{\circ} C \)[/tex], it changes from a liquid to a gas.
Combining all the answers together, we have:
```
('Gallium (Ga)', 'freezes', 'condenses', 'gas')
```
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.