Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine how the [tex]\( y \)[/tex]-values in the table grow, we need to analyze the given data points and identify the pattern.
The table is:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 0 & 1 \\ \hline 2 & 49 \\ \hline 4 & 2,401 \\ \hline 6 & 117,649 \\ \hline \end{tabular} \][/tex]
We can calculate the ratios between subsequent [tex]\( y \)[/tex]-values to see if there's a multiplicative factor involved:
1. The ratio between [tex]\( y \)[/tex]-values when [tex]\( x \)[/tex] increases from 0 to 2:
[tex]\[ \frac{y(2)}{y(0)} = \frac{49}{1} = 49 \][/tex]
2. The ratio between [tex]\( y \)[/tex]-values when [tex]\( x \)[/tex] increases from 2 to 4:
[tex]\[ \frac{y(4)}{y(2)} = \frac{2,401}{49} = 49 \][/tex]
3. The ratio between [tex]\( y \)[/tex]-values when [tex]\( x \)[/tex] increases from 4 to 6:
[tex]\[ \frac{y(6)}{y(4)} = \frac{117,649}{2,401} = 49 \][/tex]
From these calculations, we observe that every time [tex]\( x \)[/tex] increases by 2 units, the [tex]\( y \)[/tex]-values increase by a factor of 49.
To understand how the [tex]\( y \)[/tex]-values change for each 1 unit increase in [tex]\( x \)[/tex], we need to recognize that:
[tex]\[ 49 = 7^2 \][/tex]
Since the factor of 49 applies over 2 units of [tex]\( x \)[/tex]:
[tex]\[ 49 = 7^2 \implies y \text{ increases by a factor of 7 for each x increase of 1} \][/tex]
Thus, the correct description of how the [tex]\( y \)[/tex]-values grow for each [tex]\( x \)[/tex] increase of 1 is:
The [tex]\( y \)[/tex]-values increase by a factor of 7 for each [tex]\( x \)[/tex] increase of 1.
The table is:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 0 & 1 \\ \hline 2 & 49 \\ \hline 4 & 2,401 \\ \hline 6 & 117,649 \\ \hline \end{tabular} \][/tex]
We can calculate the ratios between subsequent [tex]\( y \)[/tex]-values to see if there's a multiplicative factor involved:
1. The ratio between [tex]\( y \)[/tex]-values when [tex]\( x \)[/tex] increases from 0 to 2:
[tex]\[ \frac{y(2)}{y(0)} = \frac{49}{1} = 49 \][/tex]
2. The ratio between [tex]\( y \)[/tex]-values when [tex]\( x \)[/tex] increases from 2 to 4:
[tex]\[ \frac{y(4)}{y(2)} = \frac{2,401}{49} = 49 \][/tex]
3. The ratio between [tex]\( y \)[/tex]-values when [tex]\( x \)[/tex] increases from 4 to 6:
[tex]\[ \frac{y(6)}{y(4)} = \frac{117,649}{2,401} = 49 \][/tex]
From these calculations, we observe that every time [tex]\( x \)[/tex] increases by 2 units, the [tex]\( y \)[/tex]-values increase by a factor of 49.
To understand how the [tex]\( y \)[/tex]-values change for each 1 unit increase in [tex]\( x \)[/tex], we need to recognize that:
[tex]\[ 49 = 7^2 \][/tex]
Since the factor of 49 applies over 2 units of [tex]\( x \)[/tex]:
[tex]\[ 49 = 7^2 \implies y \text{ increases by a factor of 7 for each x increase of 1} \][/tex]
Thus, the correct description of how the [tex]\( y \)[/tex]-values grow for each [tex]\( x \)[/tex] increase of 1 is:
The [tex]\( y \)[/tex]-values increase by a factor of 7 for each [tex]\( x \)[/tex] increase of 1.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.