Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To prove that the quadrilateral KITE is a kite using the distance formula, we'll go through each pair of adjacent sides and see if we can establish equal lengths for pairs of adjacent sides.
The coordinates of the vertices are given as:
[tex]\[ K (0, -2), \ I (1, 2), \ T (7, 5), \ E (4, -1) \][/tex]
First, let's use the distance formula to calculate the lengths of each side.
1. Length of KI:
[tex]\[ KI = \sqrt{(1-0)^2 + (2 - (-2))^2} = \sqrt{1 + 16} = \sqrt{17} \approx 4.123 \][/tex]
2. Length of KE:
[tex]\[ KE = \sqrt{(4-0)^2 + (-1 - (-2))^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.123 \][/tex]
3. Length of IT:
[tex]\[ IT = \sqrt{(7-1)^2 + (5-2)^2} = \sqrt{36 + 9} = \sqrt{45} \approx 6.708 \][/tex]
4. Length of TE:
[tex]\[ TE = \sqrt{(4-7)^2 + (-1-5)^2} = \sqrt{9 + 36} = \sqrt{45} \approx 6.708 \][/tex]
Therefore, we have the lengths:
- [tex]\( KI \approx 4.123 \)[/tex]
- [tex]\( KE \approx 4.123 \)[/tex]
- [tex]\( IT \approx 6.708 \)[/tex]
- [tex]\( TE \approx 6.708 \)[/tex]
So, we can see that [tex]\( KI = KE \)[/tex] and [tex]\( IT = TE \)[/tex]. This means the quadrilateral has two distinct pairs of adjacent sides that are equal.
Therefore, KITE is a kite because it has two pairs of adjacent sides that are equal.
Filling in the blanks of the given proof:
Using the distance formula,
[tex]\[ KI = \sqrt{(2-(-2))^2 + (1-0)^2} = \sqrt{17}, \][/tex]
[tex]\[ KE = \sqrt{17}, \][/tex]
[tex]\[ IT = \sqrt{45}, \][/tex]
[tex]\[ TE = \sqrt{45}. \][/tex]
Therefore, KITE is a kite because it has two pairs of adjacent sides that are equal.
The coordinates of the vertices are given as:
[tex]\[ K (0, -2), \ I (1, 2), \ T (7, 5), \ E (4, -1) \][/tex]
First, let's use the distance formula to calculate the lengths of each side.
1. Length of KI:
[tex]\[ KI = \sqrt{(1-0)^2 + (2 - (-2))^2} = \sqrt{1 + 16} = \sqrt{17} \approx 4.123 \][/tex]
2. Length of KE:
[tex]\[ KE = \sqrt{(4-0)^2 + (-1 - (-2))^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.123 \][/tex]
3. Length of IT:
[tex]\[ IT = \sqrt{(7-1)^2 + (5-2)^2} = \sqrt{36 + 9} = \sqrt{45} \approx 6.708 \][/tex]
4. Length of TE:
[tex]\[ TE = \sqrt{(4-7)^2 + (-1-5)^2} = \sqrt{9 + 36} = \sqrt{45} \approx 6.708 \][/tex]
Therefore, we have the lengths:
- [tex]\( KI \approx 4.123 \)[/tex]
- [tex]\( KE \approx 4.123 \)[/tex]
- [tex]\( IT \approx 6.708 \)[/tex]
- [tex]\( TE \approx 6.708 \)[/tex]
So, we can see that [tex]\( KI = KE \)[/tex] and [tex]\( IT = TE \)[/tex]. This means the quadrilateral has two distinct pairs of adjacent sides that are equal.
Therefore, KITE is a kite because it has two pairs of adjacent sides that are equal.
Filling in the blanks of the given proof:
Using the distance formula,
[tex]\[ KI = \sqrt{(2-(-2))^2 + (1-0)^2} = \sqrt{17}, \][/tex]
[tex]\[ KE = \sqrt{17}, \][/tex]
[tex]\[ IT = \sqrt{45}, \][/tex]
[tex]\[ TE = \sqrt{45}. \][/tex]
Therefore, KITE is a kite because it has two pairs of adjacent sides that are equal.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.