Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Find the vertex of [tex]$f(x) = 2x^2 - 8x + 3$[/tex].

A. (2, -5)
B. (4, 3)
C. (-2, -5)
D. (-2, 21)

Sagot :

To find the vertex of the quadratic function [tex]\(f(x) = 2x^2 - 8x + 3\)[/tex], we can use the vertex formula for a quadratic function in the form [tex]\(ax^2 + bx + c\)[/tex], where the vertex [tex]\((h, k)\)[/tex] can be found using:

1. The x-coordinate of the vertex [tex]\(h\)[/tex]:

The x-coordinate of the vertex of a parabola described by [tex]\(ax^2 + bx + c\)[/tex] is given by the formula:
[tex]\[ h = \frac{-b}{2a} \][/tex]

For the given function [tex]\(f(x) = 2x^2 - 8x + 3\)[/tex]:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = -8\)[/tex]

Plugging in these values:
[tex]\[ h = \frac{-(-8)}{2 \cdot 2} = \frac{8}{4} = 2 \][/tex]

2. The y-coordinate of the vertex [tex]\(k\)[/tex]:

To find the y-coordinate of the vertex, substitute [tex]\(h\)[/tex] back into the original function:
[tex]\[ k = f(h) = f(2) \][/tex]

Calculate [tex]\(f(2)\)[/tex]:
[tex]\[ f(2) = 2(2)^2 - 8(2) + 3 = 2 \cdot 4 - 16 + 3 = 8 - 16 + 3 = -5 \][/tex]

3. Vertex coordinates:

Therefore, the vertex of the function [tex]\(f(x) = 2x^2 - 8x + 3\)[/tex] is:
[tex]\[ (h, k) = (2, -5) \][/tex]

Given the answers to choose from, the correct vertex is [tex]\((2, -5)\)[/tex].

Thus, the answer is [tex]\((2, -5)\)[/tex].