Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's find the slope of the given line [tex]\(5x - 4y = 24\)[/tex].
1. Rearrange the equation of the line:
We start with the standard form of the line equation:
[tex]\[ 5x - 4y = 24 \][/tex]
2. Solve for [tex]\(y\)[/tex] to get the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope:
[tex]\[ 5x - 4y = 24 \][/tex]
Subtract [tex]\(5x\)[/tex] from both sides:
[tex]\[ -4y = -5x + 24 \][/tex]
Divide every term by [tex]\(-4\)[/tex]:
[tex]\[ y = \frac{5}{4}x - 6 \][/tex]
3. Identify the slope from the slope-intercept form [tex]\(y = mx + b\)[/tex]:
The coefficient of [tex]\(x\)[/tex] is the slope [tex]\(m\)[/tex].
[tex]\[ y = \left( \frac{5}{4} \right) x - 6 \][/tex]
Therefore, the slope [tex]\(m\)[/tex] is [tex]\(\frac{5}{4}\)[/tex].
Now we can select the correct option that corresponds to the slope:
[tex]\[ \boxed{\frac{5}{4}} \][/tex]
So the correct answer is [tex]\( \boxed{E} \)[/tex].
1. Rearrange the equation of the line:
We start with the standard form of the line equation:
[tex]\[ 5x - 4y = 24 \][/tex]
2. Solve for [tex]\(y\)[/tex] to get the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope:
[tex]\[ 5x - 4y = 24 \][/tex]
Subtract [tex]\(5x\)[/tex] from both sides:
[tex]\[ -4y = -5x + 24 \][/tex]
Divide every term by [tex]\(-4\)[/tex]:
[tex]\[ y = \frac{5}{4}x - 6 \][/tex]
3. Identify the slope from the slope-intercept form [tex]\(y = mx + b\)[/tex]:
The coefficient of [tex]\(x\)[/tex] is the slope [tex]\(m\)[/tex].
[tex]\[ y = \left( \frac{5}{4} \right) x - 6 \][/tex]
Therefore, the slope [tex]\(m\)[/tex] is [tex]\(\frac{5}{4}\)[/tex].
Now we can select the correct option that corresponds to the slope:
[tex]\[ \boxed{\frac{5}{4}} \][/tex]
So the correct answer is [tex]\( \boxed{E} \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.