Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the vertex of the quadratic function [tex]\( f(x) = -x^2 + 4 \)[/tex], follow these steps:
1. Identify the standard form of a quadratic function:
A quadratic function is generally given by [tex]\( f(x) = ax^2 + bx + c \)[/tex], where [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are constants.
2. Write down the coefficients:
For the function [tex]\( f(x) = -x^2 + 4 \)[/tex], we identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
- [tex]\( c = 4 \)[/tex]
3. Calculate the x-coordinate of the vertex:
The x-coordinate of the vertex of a quadratic function can be found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex].
Substituting the values of the coefficients into the formula:
[tex]\[ x = -\frac{0}{2 \cdot -1} = 0 \][/tex]
4. Calculate the y-coordinate by substituting x back into the original function:
Substitute [tex]\( x = 0 \)[/tex] back into the function [tex]\( f(x) = -x^2 + 4 \)[/tex]:
[tex]\[ f(0) = -0^2 + 4 = 4 \][/tex]
5. Determine the vertex coordinates:
Hence, the vertex of the function [tex]\( f(x) = -x^2 + 4 \)[/tex] is the point [tex]\( (0, 4) \)[/tex].
So, the correct answer is [tex]\( (0, 4) \)[/tex].
1. Identify the standard form of a quadratic function:
A quadratic function is generally given by [tex]\( f(x) = ax^2 + bx + c \)[/tex], where [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are constants.
2. Write down the coefficients:
For the function [tex]\( f(x) = -x^2 + 4 \)[/tex], we identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
- [tex]\( c = 4 \)[/tex]
3. Calculate the x-coordinate of the vertex:
The x-coordinate of the vertex of a quadratic function can be found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex].
Substituting the values of the coefficients into the formula:
[tex]\[ x = -\frac{0}{2 \cdot -1} = 0 \][/tex]
4. Calculate the y-coordinate by substituting x back into the original function:
Substitute [tex]\( x = 0 \)[/tex] back into the function [tex]\( f(x) = -x^2 + 4 \)[/tex]:
[tex]\[ f(0) = -0^2 + 4 = 4 \][/tex]
5. Determine the vertex coordinates:
Hence, the vertex of the function [tex]\( f(x) = -x^2 + 4 \)[/tex] is the point [tex]\( (0, 4) \)[/tex].
So, the correct answer is [tex]\( (0, 4) \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.