Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine how many more payments Mr. Kirov needs to make before the balance is zero, let's analyze the intermediate balances and interest added each month until the balance is completely paid off. The problem states that he will make monthly payments of [tex]$100, and no new purchases are made with an interest rate of 1.2%.
The initial data and first three entries are given:
- Beginning balance: \$[/tex]800.00
- Monthly payment: \[tex]$100.00 - Interest rate: 1.2% per month The table provides the first three months of payments as follows: | Month | Balance | Payment | Interest Rate | Interest | New Balance | |-------|----------|---------|----------------|-----------|--------| | 1 | \$[/tex]800.00 | \[tex]$100.00 | 0.012 | \$[/tex]8.40 | \[tex]$708.40 | | 2 | \$[/tex]708.40 | \[tex]$100.00 | 0.012 | \$[/tex]7.30 | \[tex]$615.70 | | 3 | \$[/tex]615.70 | \[tex]$100.00 | 0.012 | \$[/tex]6.19 | \[tex]$515.70 | Following the same methodology, let's continue to calculate: #### Month 4: - Previous Balance: \$[/tex]515.70
- Monthly Interest = \[tex]$515.70 * 0.012 = \$[/tex]6.19
- New Balance after Payment = \[tex]$515.70 - \$[/tex]100 + \[tex]$6.19 = \$[/tex]421.89
#### Month 5:
- Previous Balance: \[tex]$421.89 - Monthly Interest = \$[/tex]421.89 * 0.012 = \[tex]$5.06 - New Balance after Payment = \$[/tex]421.89 - \[tex]$100 + \$[/tex]5.06 = \[tex]$326.95 #### Month 6: - Previous Balance: \$[/tex]326.95
- Monthly Interest = \[tex]$326.95 * 0.012 = \$[/tex]3.92
- New Balance after Payment = \[tex]$326.95 - \$[/tex]100 + \[tex]$3.92 = \$[/tex]230.87
#### Month 7:
- Previous Balance: \[tex]$230.87 - Monthly Interest = \$[/tex]230.87 * 0.012 = \[tex]$2.77 - New Balance after Payment = \$[/tex]230.87 - \[tex]$100 + \$[/tex]2.77 = \[tex]$133.64 #### Month 8: - Previous Balance: \$[/tex]133.64
- Monthly Interest = \[tex]$133.64 * 0.012 = \$[/tex]1.60
- New Balance after Payment = \[tex]$133.64 - \$[/tex]100 + \[tex]$1.60 = \$[/tex]35.24
Since the remaining balance after 8 months (approx. \[tex]$35.24) will need another payment, we calculate for the final month: #### Month 9: - Previous Balance: \$[/tex]35.24
- Monthly Interest = \[tex]$35.24 * 0.012 = \$[/tex]0.42
- New Balance after Payment = \[tex]$35.24 - \$[/tex]100 + \[tex]$0.42 = -\$[/tex]64.34
Since the balance is negative after these payments, no further payment is required once the balance crosses zero.
So, Mr. Kirov will need 7 more payments to completely pay off his credit card balance. Therefore, the correct option is:
- 7 payments
- Monthly payment: \[tex]$100.00 - Interest rate: 1.2% per month The table provides the first three months of payments as follows: | Month | Balance | Payment | Interest Rate | Interest | New Balance | |-------|----------|---------|----------------|-----------|--------| | 1 | \$[/tex]800.00 | \[tex]$100.00 | 0.012 | \$[/tex]8.40 | \[tex]$708.40 | | 2 | \$[/tex]708.40 | \[tex]$100.00 | 0.012 | \$[/tex]7.30 | \[tex]$615.70 | | 3 | \$[/tex]615.70 | \[tex]$100.00 | 0.012 | \$[/tex]6.19 | \[tex]$515.70 | Following the same methodology, let's continue to calculate: #### Month 4: - Previous Balance: \$[/tex]515.70
- Monthly Interest = \[tex]$515.70 * 0.012 = \$[/tex]6.19
- New Balance after Payment = \[tex]$515.70 - \$[/tex]100 + \[tex]$6.19 = \$[/tex]421.89
#### Month 5:
- Previous Balance: \[tex]$421.89 - Monthly Interest = \$[/tex]421.89 * 0.012 = \[tex]$5.06 - New Balance after Payment = \$[/tex]421.89 - \[tex]$100 + \$[/tex]5.06 = \[tex]$326.95 #### Month 6: - Previous Balance: \$[/tex]326.95
- Monthly Interest = \[tex]$326.95 * 0.012 = \$[/tex]3.92
- New Balance after Payment = \[tex]$326.95 - \$[/tex]100 + \[tex]$3.92 = \$[/tex]230.87
#### Month 7:
- Previous Balance: \[tex]$230.87 - Monthly Interest = \$[/tex]230.87 * 0.012 = \[tex]$2.77 - New Balance after Payment = \$[/tex]230.87 - \[tex]$100 + \$[/tex]2.77 = \[tex]$133.64 #### Month 8: - Previous Balance: \$[/tex]133.64
- Monthly Interest = \[tex]$133.64 * 0.012 = \$[/tex]1.60
- New Balance after Payment = \[tex]$133.64 - \$[/tex]100 + \[tex]$1.60 = \$[/tex]35.24
Since the remaining balance after 8 months (approx. \[tex]$35.24) will need another payment, we calculate for the final month: #### Month 9: - Previous Balance: \$[/tex]35.24
- Monthly Interest = \[tex]$35.24 * 0.012 = \$[/tex]0.42
- New Balance after Payment = \[tex]$35.24 - \$[/tex]100 + \[tex]$0.42 = -\$[/tex]64.34
Since the balance is negative after these payments, no further payment is required once the balance crosses zero.
So, Mr. Kirov will need 7 more payments to completely pay off his credit card balance. Therefore, the correct option is:
- 7 payments
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.