Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the amount of heat that must be transferred to 55 grams of ice to change its temperature from [tex]\(-13^{\circ} C\)[/tex] to [tex]\(-5.0^{\circ} C\)[/tex], we will follow these steps:
1. Identify the given values:
- Mass of ice ([tex]\(m\)[/tex]) = 55 grams
- Initial temperature ([tex]\(T_i\)[/tex]) = [tex]\(-13^{\circ} C\)[/tex]
- Final temperature ([tex]\(T_f\)[/tex]) = [tex]\(-5.0^{\circ} C\)[/tex]
- Specific heat capacity of ice ([tex]\(c\)[/tex]) = 2.11 [tex]\(\text{J} / \text{g} \cdot \text{ }^{\circ} C\)[/tex]
2. Determine the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i = (-5.0 - (-13))^{\circ} C = 8^{\circ} C \][/tex]
3. Apply the formula for heat transfer:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
Where:
- [tex]\(Q\)[/tex] is the heat transferred
- [tex]\(m\)[/tex] is the mass of the ice
- [tex]\(c\)[/tex] is the specific heat capacity
- [tex]\(\Delta T\)[/tex] is the temperature change
4. Substitute the known values into the formula:
[tex]\[ Q = 55 \, \text{g} \cdot 2.11 \, \text{J} / \text{g} \cdot \text{ }^{\circ} C \cdot 8 \, ^{\circ} C \][/tex]
5. Calculate the heat transferred:
[tex]\[ Q = 55 \cdot 2.11 \cdot 8 = 928.4 \, \text{J} \][/tex]
Therefore, the amount of heat that must be transferred is [tex]\(928.4 \, \text{J}\)[/tex].
Based on the answer choices provided:
A. 930 J
B. 3.3 J
C. 580 J
D. 15 J
Because [tex]\(928.4 \, \text{J}\)[/tex] is closest to [tex]\(930 \, \text{J}\)[/tex], the correct answer is:
A. 930 J
1. Identify the given values:
- Mass of ice ([tex]\(m\)[/tex]) = 55 grams
- Initial temperature ([tex]\(T_i\)[/tex]) = [tex]\(-13^{\circ} C\)[/tex]
- Final temperature ([tex]\(T_f\)[/tex]) = [tex]\(-5.0^{\circ} C\)[/tex]
- Specific heat capacity of ice ([tex]\(c\)[/tex]) = 2.11 [tex]\(\text{J} / \text{g} \cdot \text{ }^{\circ} C\)[/tex]
2. Determine the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i = (-5.0 - (-13))^{\circ} C = 8^{\circ} C \][/tex]
3. Apply the formula for heat transfer:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
Where:
- [tex]\(Q\)[/tex] is the heat transferred
- [tex]\(m\)[/tex] is the mass of the ice
- [tex]\(c\)[/tex] is the specific heat capacity
- [tex]\(\Delta T\)[/tex] is the temperature change
4. Substitute the known values into the formula:
[tex]\[ Q = 55 \, \text{g} \cdot 2.11 \, \text{J} / \text{g} \cdot \text{ }^{\circ} C \cdot 8 \, ^{\circ} C \][/tex]
5. Calculate the heat transferred:
[tex]\[ Q = 55 \cdot 2.11 \cdot 8 = 928.4 \, \text{J} \][/tex]
Therefore, the amount of heat that must be transferred is [tex]\(928.4 \, \text{J}\)[/tex].
Based on the answer choices provided:
A. 930 J
B. 3.3 J
C. 580 J
D. 15 J
Because [tex]\(928.4 \, \text{J}\)[/tex] is closest to [tex]\(930 \, \text{J}\)[/tex], the correct answer is:
A. 930 J
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.