Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the amount of heat that must be transferred to 55 grams of ice to change its temperature from [tex]\(-13^{\circ} C\)[/tex] to [tex]\(-5.0^{\circ} C\)[/tex], we will follow these steps:
1. Identify the given values:
- Mass of ice ([tex]\(m\)[/tex]) = 55 grams
- Initial temperature ([tex]\(T_i\)[/tex]) = [tex]\(-13^{\circ} C\)[/tex]
- Final temperature ([tex]\(T_f\)[/tex]) = [tex]\(-5.0^{\circ} C\)[/tex]
- Specific heat capacity of ice ([tex]\(c\)[/tex]) = 2.11 [tex]\(\text{J} / \text{g} \cdot \text{ }^{\circ} C\)[/tex]
2. Determine the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i = (-5.0 - (-13))^{\circ} C = 8^{\circ} C \][/tex]
3. Apply the formula for heat transfer:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
Where:
- [tex]\(Q\)[/tex] is the heat transferred
- [tex]\(m\)[/tex] is the mass of the ice
- [tex]\(c\)[/tex] is the specific heat capacity
- [tex]\(\Delta T\)[/tex] is the temperature change
4. Substitute the known values into the formula:
[tex]\[ Q = 55 \, \text{g} \cdot 2.11 \, \text{J} / \text{g} \cdot \text{ }^{\circ} C \cdot 8 \, ^{\circ} C \][/tex]
5. Calculate the heat transferred:
[tex]\[ Q = 55 \cdot 2.11 \cdot 8 = 928.4 \, \text{J} \][/tex]
Therefore, the amount of heat that must be transferred is [tex]\(928.4 \, \text{J}\)[/tex].
Based on the answer choices provided:
A. 930 J
B. 3.3 J
C. 580 J
D. 15 J
Because [tex]\(928.4 \, \text{J}\)[/tex] is closest to [tex]\(930 \, \text{J}\)[/tex], the correct answer is:
A. 930 J
1. Identify the given values:
- Mass of ice ([tex]\(m\)[/tex]) = 55 grams
- Initial temperature ([tex]\(T_i\)[/tex]) = [tex]\(-13^{\circ} C\)[/tex]
- Final temperature ([tex]\(T_f\)[/tex]) = [tex]\(-5.0^{\circ} C\)[/tex]
- Specific heat capacity of ice ([tex]\(c\)[/tex]) = 2.11 [tex]\(\text{J} / \text{g} \cdot \text{ }^{\circ} C\)[/tex]
2. Determine the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i = (-5.0 - (-13))^{\circ} C = 8^{\circ} C \][/tex]
3. Apply the formula for heat transfer:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
Where:
- [tex]\(Q\)[/tex] is the heat transferred
- [tex]\(m\)[/tex] is the mass of the ice
- [tex]\(c\)[/tex] is the specific heat capacity
- [tex]\(\Delta T\)[/tex] is the temperature change
4. Substitute the known values into the formula:
[tex]\[ Q = 55 \, \text{g} \cdot 2.11 \, \text{J} / \text{g} \cdot \text{ }^{\circ} C \cdot 8 \, ^{\circ} C \][/tex]
5. Calculate the heat transferred:
[tex]\[ Q = 55 \cdot 2.11 \cdot 8 = 928.4 \, \text{J} \][/tex]
Therefore, the amount of heat that must be transferred is [tex]\(928.4 \, \text{J}\)[/tex].
Based on the answer choices provided:
A. 930 J
B. 3.3 J
C. 580 J
D. 15 J
Because [tex]\(928.4 \, \text{J}\)[/tex] is closest to [tex]\(930 \, \text{J}\)[/tex], the correct answer is:
A. 930 J
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.