Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the amount of heat that must be transferred to 55 grams of ice to change its temperature from [tex]\(-13^{\circ} C\)[/tex] to [tex]\(-5.0^{\circ} C\)[/tex], we will follow these steps:
1. Identify the given values:
- Mass of ice ([tex]\(m\)[/tex]) = 55 grams
- Initial temperature ([tex]\(T_i\)[/tex]) = [tex]\(-13^{\circ} C\)[/tex]
- Final temperature ([tex]\(T_f\)[/tex]) = [tex]\(-5.0^{\circ} C\)[/tex]
- Specific heat capacity of ice ([tex]\(c\)[/tex]) = 2.11 [tex]\(\text{J} / \text{g} \cdot \text{ }^{\circ} C\)[/tex]
2. Determine the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i = (-5.0 - (-13))^{\circ} C = 8^{\circ} C \][/tex]
3. Apply the formula for heat transfer:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
Where:
- [tex]\(Q\)[/tex] is the heat transferred
- [tex]\(m\)[/tex] is the mass of the ice
- [tex]\(c\)[/tex] is the specific heat capacity
- [tex]\(\Delta T\)[/tex] is the temperature change
4. Substitute the known values into the formula:
[tex]\[ Q = 55 \, \text{g} \cdot 2.11 \, \text{J} / \text{g} \cdot \text{ }^{\circ} C \cdot 8 \, ^{\circ} C \][/tex]
5. Calculate the heat transferred:
[tex]\[ Q = 55 \cdot 2.11 \cdot 8 = 928.4 \, \text{J} \][/tex]
Therefore, the amount of heat that must be transferred is [tex]\(928.4 \, \text{J}\)[/tex].
Based on the answer choices provided:
A. 930 J
B. 3.3 J
C. 580 J
D. 15 J
Because [tex]\(928.4 \, \text{J}\)[/tex] is closest to [tex]\(930 \, \text{J}\)[/tex], the correct answer is:
A. 930 J
1. Identify the given values:
- Mass of ice ([tex]\(m\)[/tex]) = 55 grams
- Initial temperature ([tex]\(T_i\)[/tex]) = [tex]\(-13^{\circ} C\)[/tex]
- Final temperature ([tex]\(T_f\)[/tex]) = [tex]\(-5.0^{\circ} C\)[/tex]
- Specific heat capacity of ice ([tex]\(c\)[/tex]) = 2.11 [tex]\(\text{J} / \text{g} \cdot \text{ }^{\circ} C\)[/tex]
2. Determine the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i = (-5.0 - (-13))^{\circ} C = 8^{\circ} C \][/tex]
3. Apply the formula for heat transfer:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
Where:
- [tex]\(Q\)[/tex] is the heat transferred
- [tex]\(m\)[/tex] is the mass of the ice
- [tex]\(c\)[/tex] is the specific heat capacity
- [tex]\(\Delta T\)[/tex] is the temperature change
4. Substitute the known values into the formula:
[tex]\[ Q = 55 \, \text{g} \cdot 2.11 \, \text{J} / \text{g} \cdot \text{ }^{\circ} C \cdot 8 \, ^{\circ} C \][/tex]
5. Calculate the heat transferred:
[tex]\[ Q = 55 \cdot 2.11 \cdot 8 = 928.4 \, \text{J} \][/tex]
Therefore, the amount of heat that must be transferred is [tex]\(928.4 \, \text{J}\)[/tex].
Based on the answer choices provided:
A. 930 J
B. 3.3 J
C. 580 J
D. 15 J
Because [tex]\(928.4 \, \text{J}\)[/tex] is closest to [tex]\(930 \, \text{J}\)[/tex], the correct answer is:
A. 930 J
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.