Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's break it down step-by-step to find the x-component of the total force acting on the block.
1. Understand the Setup:
You have two forces acting at angles on the block:
- Force 1 (F1): 115 N at an angle of 75.0 degrees.
- Force 2 (F2): 213 N at an angle of 295 degrees.
2. Decompose Each Force into Components:
To find the x-component of each force, we use the cosine of the given angle because the x-component involves the adjacent side of the angle in a right triangle.
- Force 1:
- Magnitude: 115 N
- Angle: 75.0 degrees
- x-component (F1x) is calculated as:
[tex]\[ F1x = 115 \times \cos(75^{\circ}) \][/tex]
- This gives us approximately:
[tex]\[ F1x \approx 29.764 \text{ N} \][/tex]
- Force 2:
- Magnitude: 213 N
- Angle: 295 degrees
- x-component (F2x) is calculated as:
[tex]\[ F2x = 213 \times \cos(295^{\circ}) \][/tex]
- This gives us approximately:
[tex]\[ F2x \approx 90.018 \text{ N} \][/tex]
3. Calculate the Total x-component:
To find the total x-component of the net force acting on the block, we sum the x-components of both forces:
[tex]\[ F_{x_{total}} = F1x + F2x \][/tex]
Substituting the values we found:
[tex]\[ F_{x_{total}} \approx 29.764 + 90.018 \][/tex]
This gives us:
[tex]\[ F_{x_{total}} \approx 119.782 \text{ N} \][/tex]
Hence, the total x-component of the force acting on the block is approximately [tex]\( 119.782 \)[/tex] N.
1. Understand the Setup:
You have two forces acting at angles on the block:
- Force 1 (F1): 115 N at an angle of 75.0 degrees.
- Force 2 (F2): 213 N at an angle of 295 degrees.
2. Decompose Each Force into Components:
To find the x-component of each force, we use the cosine of the given angle because the x-component involves the adjacent side of the angle in a right triangle.
- Force 1:
- Magnitude: 115 N
- Angle: 75.0 degrees
- x-component (F1x) is calculated as:
[tex]\[ F1x = 115 \times \cos(75^{\circ}) \][/tex]
- This gives us approximately:
[tex]\[ F1x \approx 29.764 \text{ N} \][/tex]
- Force 2:
- Magnitude: 213 N
- Angle: 295 degrees
- x-component (F2x) is calculated as:
[tex]\[ F2x = 213 \times \cos(295^{\circ}) \][/tex]
- This gives us approximately:
[tex]\[ F2x \approx 90.018 \text{ N} \][/tex]
3. Calculate the Total x-component:
To find the total x-component of the net force acting on the block, we sum the x-components of both forces:
[tex]\[ F_{x_{total}} = F1x + F2x \][/tex]
Substituting the values we found:
[tex]\[ F_{x_{total}} \approx 29.764 + 90.018 \][/tex]
This gives us:
[tex]\[ F_{x_{total}} \approx 119.782 \text{ N} \][/tex]
Hence, the total x-component of the force acting on the block is approximately [tex]\( 119.782 \)[/tex] N.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.