Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's determine the ion formed when potassium (K) achieves a noble-gas electron configuration.
1. Identify the atomic number:
- Potassium (K) has an atomic number of 19. This means that a neutral potassium atom has 19 protons and 19 electrons.
2. Determine the electronic configuration:
- The electronic configuration of potassium is [tex]\( 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 \)[/tex]. This shows that potassium has one electron in its outermost shell (4s^1).
3. Achieving a noble-gas electron configuration:
- Noble gases have full outer electron shells. The closest noble gas before potassium in the periodic table is argon (Ar), which has an electronic configuration of [tex]\( 1s^2 2s^2 2p^6 3s^2 3p^6 \)[/tex].
- For potassium to achieve the noble-gas configuration of argon, it needs to lose one electron.
4. Forming the ion:
- When potassium loses one electron, the electron configuration becomes [tex]\( 1s^2 2s^2 2p^6 3s^2 3p^6 \)[/tex], matching that of argon.
- By losing one electron, potassium forms an ion with a +1 charge because it now has 19 protons (positively charged) and 18 electrons (negatively charged), resulting in a net positive charge.
5. Conclusion:
- The formula of the ion formed when potassium loses one electron to achieve a noble-gas electron configuration is [tex]\( K^+ \)[/tex].
Hence, the correct option is [tex]\( K^+ \)[/tex].
The numerical result indicating the correct option is:
- 2
This corresponds to:
- [tex]\( K^+ \)[/tex]
So, the ion formed when potassium achieves a noble-gas electron configuration is [tex]\( K^+ \)[/tex], matching the correct answer which is option 2.
1. Identify the atomic number:
- Potassium (K) has an atomic number of 19. This means that a neutral potassium atom has 19 protons and 19 electrons.
2. Determine the electronic configuration:
- The electronic configuration of potassium is [tex]\( 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 \)[/tex]. This shows that potassium has one electron in its outermost shell (4s^1).
3. Achieving a noble-gas electron configuration:
- Noble gases have full outer electron shells. The closest noble gas before potassium in the periodic table is argon (Ar), which has an electronic configuration of [tex]\( 1s^2 2s^2 2p^6 3s^2 3p^6 \)[/tex].
- For potassium to achieve the noble-gas configuration of argon, it needs to lose one electron.
4. Forming the ion:
- When potassium loses one electron, the electron configuration becomes [tex]\( 1s^2 2s^2 2p^6 3s^2 3p^6 \)[/tex], matching that of argon.
- By losing one electron, potassium forms an ion with a +1 charge because it now has 19 protons (positively charged) and 18 electrons (negatively charged), resulting in a net positive charge.
5. Conclusion:
- The formula of the ion formed when potassium loses one electron to achieve a noble-gas electron configuration is [tex]\( K^+ \)[/tex].
Hence, the correct option is [tex]\( K^+ \)[/tex].
The numerical result indicating the correct option is:
- 2
This corresponds to:
- [tex]\( K^+ \)[/tex]
So, the ion formed when potassium achieves a noble-gas electron configuration is [tex]\( K^+ \)[/tex], matching the correct answer which is option 2.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.