Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the quadratic equation [tex]\( x^2 + 4x + 1 = 0 \)[/tex], we will use the quadratic formula, which is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = 1 \)[/tex]
First, let's calculate the discriminant ([tex]\( \Delta \)[/tex]), which is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = 4^2 - 4 \cdot 1 \cdot 1 = 16 - 4 = 12 \][/tex]
The discriminant is 12.
Next, we use the quadratic formula to find the roots. We need to calculate each root separately using the positive and negative forms of the [tex]\(\pm\)[/tex] sign in the formula.
The first root ([tex]\( x_1 \)[/tex]) is calculated as:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + \sqrt{12}}{2 \cdot 1} = \frac{-4 + \sqrt{12}}{2} \][/tex]
Solving this, we get:
[tex]\[ x_1 = \frac{-4 + 3.4641016151377544}{2} = \frac{-0.5358983848622456}{2} = -0.2679491924311228 \][/tex]
Rounding [tex]\( x_1 \)[/tex] to two decimal places:
[tex]\[ x_1 \approx -0.27 \][/tex]
The second root ([tex]\( x_2 \)[/tex]) is calculated as:
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - \sqrt{12}}{2 \cdot 1} = \frac{-4 - \sqrt{12}}{2} \][/tex]
Solving this, we get:
[tex]\[ x_2 = \frac{-4 - 3.4641016151377544}{2} = \frac{-7.4641016151377544}{2} = -3.732050807568877 \][/tex]
Rounding [tex]\( x_2 \)[/tex] to two decimal places:
[tex]\[ x_2 \approx -3.73 \][/tex]
Therefore, the roots of the quadratic equation [tex]\( x^2 + 4x + 1 = 0 \)[/tex], rounded to two decimal places, are:
[tex]\[ \boxed{-0.27 \text{ and } -3.73} \][/tex]
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = 1 \)[/tex]
First, let's calculate the discriminant ([tex]\( \Delta \)[/tex]), which is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = 4^2 - 4 \cdot 1 \cdot 1 = 16 - 4 = 12 \][/tex]
The discriminant is 12.
Next, we use the quadratic formula to find the roots. We need to calculate each root separately using the positive and negative forms of the [tex]\(\pm\)[/tex] sign in the formula.
The first root ([tex]\( x_1 \)[/tex]) is calculated as:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + \sqrt{12}}{2 \cdot 1} = \frac{-4 + \sqrt{12}}{2} \][/tex]
Solving this, we get:
[tex]\[ x_1 = \frac{-4 + 3.4641016151377544}{2} = \frac{-0.5358983848622456}{2} = -0.2679491924311228 \][/tex]
Rounding [tex]\( x_1 \)[/tex] to two decimal places:
[tex]\[ x_1 \approx -0.27 \][/tex]
The second root ([tex]\( x_2 \)[/tex]) is calculated as:
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - \sqrt{12}}{2 \cdot 1} = \frac{-4 - \sqrt{12}}{2} \][/tex]
Solving this, we get:
[tex]\[ x_2 = \frac{-4 - 3.4641016151377544}{2} = \frac{-7.4641016151377544}{2} = -3.732050807568877 \][/tex]
Rounding [tex]\( x_2 \)[/tex] to two decimal places:
[tex]\[ x_2 \approx -3.73 \][/tex]
Therefore, the roots of the quadratic equation [tex]\( x^2 + 4x + 1 = 0 \)[/tex], rounded to two decimal places, are:
[tex]\[ \boxed{-0.27 \text{ and } -3.73} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.