Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the [tex]\( x \)[/tex]-intercepts of the quadratic function [tex]\( y = 9x^2 - 30x + 25 \)[/tex], we need to find the values of [tex]\( x \)[/tex] for which [tex]\( y \)[/tex] is zero. In other words, we need to solve the equation:
[tex]\[ 9x^2 - 30x + 25 = 0 \][/tex]
We can find the [tex]\( x \)[/tex]-intercepts using the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our specific quadratic equation [tex]\( 9x^2 - 30x + 25 \)[/tex], we have:
- [tex]\( a = 9 \)[/tex]
- [tex]\( b = -30 \)[/tex]
- [tex]\( c = 25 \)[/tex]
First, we calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-30)^2 - 4 \cdot 9 \cdot 25 \][/tex]
[tex]\[ \Delta = 900 - 900 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
Since the discriminant [tex]\(\Delta\)[/tex] is zero, there is exactly one real solution to this quadratic equation, meaning that the equation has one repeated root (the parabola touches the x-axis at exactly one point).
Next, we use the quadratic formula to find the solution:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x = \frac{30 \pm \sqrt{0}}{2 \cdot 9} \][/tex]
[tex]\[ x = \frac{30 \pm 0}{18} \][/tex]
[tex]\[ x = \frac{30}{18} \][/tex]
[tex]\[ x = \frac{5}{3} \][/tex]
Therefore, the [tex]\( x \)[/tex]-intercepts of the quadratic function [tex]\( y = 9x^2 - 30x + 25 \)[/tex] are both located at:
[tex]\[ x = \frac{5}{3} \][/tex]
Thus, the correct answer from the given options is:
[tex]\[ x = \frac{5}{3} \text{ and } x = \frac{5}{3} \][/tex]
[tex]\[ 9x^2 - 30x + 25 = 0 \][/tex]
We can find the [tex]\( x \)[/tex]-intercepts using the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our specific quadratic equation [tex]\( 9x^2 - 30x + 25 \)[/tex], we have:
- [tex]\( a = 9 \)[/tex]
- [tex]\( b = -30 \)[/tex]
- [tex]\( c = 25 \)[/tex]
First, we calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-30)^2 - 4 \cdot 9 \cdot 25 \][/tex]
[tex]\[ \Delta = 900 - 900 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
Since the discriminant [tex]\(\Delta\)[/tex] is zero, there is exactly one real solution to this quadratic equation, meaning that the equation has one repeated root (the parabola touches the x-axis at exactly one point).
Next, we use the quadratic formula to find the solution:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x = \frac{30 \pm \sqrt{0}}{2 \cdot 9} \][/tex]
[tex]\[ x = \frac{30 \pm 0}{18} \][/tex]
[tex]\[ x = \frac{30}{18} \][/tex]
[tex]\[ x = \frac{5}{3} \][/tex]
Therefore, the [tex]\( x \)[/tex]-intercepts of the quadratic function [tex]\( y = 9x^2 - 30x + 25 \)[/tex] are both located at:
[tex]\[ x = \frac{5}{3} \][/tex]
Thus, the correct answer from the given options is:
[tex]\[ x = \frac{5}{3} \text{ and } x = \frac{5}{3} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.