Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the distance between the source charge and the test charge, we can use the formula for the electric field due to a point charge:
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
Where:
- [tex]\( E \)[/tex] is the electric field,
- [tex]\( k \)[/tex] is Coulomb's constant,
- [tex]\( q \)[/tex] is the source charge,
- [tex]\( r \)[/tex] is the distance from the source charge.
Given values:
- Source charge, [tex]\( q = 3 \times 10^{-6} \ \text{C} \)[/tex] (i.e., 3 microCoulombs converted to Coulombs),
- Electric field, [tex]\( E = 2.86 \times 10^5 \ \text{N/C} \)[/tex],
- Coulomb's constant, [tex]\( k = 8.99 \times 10^9 \ \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex].
Our goal is to solve for [tex]\( r \)[/tex]. First, re-arrange the electric field equation to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = \frac{k \cdot |q|}{E} \][/tex]
Next, take the square root of both sides to isolate [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{k \cdot |q|}{E}} \][/tex]
Substitute in the given values:
[tex]\[ r = \sqrt{\frac{8.99 \times 10^9 \ \text{N} \cdot \text{m}^2/\text{C}^2 \cdot 3 \times 10^{-6} \ \text{C}}{2.86 \times 10^5 \ \text{N/C}}} \][/tex]
Carefully calculate the value inside the square root:
[tex]\[ r = \sqrt{\frac{8.99 \times 10^9 \cdot 3 \times 10^{-6}}{2.86 \times 10^5}} \][/tex]
[tex]\[ r = \sqrt{\frac{26.97 \times 10^3}{2.86 \times 10^5}} \][/tex]
[tex]\[ r = \sqrt{0.094358 \text{ m}^2} \][/tex]
[tex]\[ r = 0.307084 \ \text{m} \][/tex]
To the nearest hundredth, the distance [tex]\( r \)[/tex] is:
[tex]\[ r = 0.31 \ \text{m} \][/tex]
Thus, the distance of the test charge from the source charge is [tex]\( \boxed{0.31} \ \text{meters} \)[/tex].
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
Where:
- [tex]\( E \)[/tex] is the electric field,
- [tex]\( k \)[/tex] is Coulomb's constant,
- [tex]\( q \)[/tex] is the source charge,
- [tex]\( r \)[/tex] is the distance from the source charge.
Given values:
- Source charge, [tex]\( q = 3 \times 10^{-6} \ \text{C} \)[/tex] (i.e., 3 microCoulombs converted to Coulombs),
- Electric field, [tex]\( E = 2.86 \times 10^5 \ \text{N/C} \)[/tex],
- Coulomb's constant, [tex]\( k = 8.99 \times 10^9 \ \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex].
Our goal is to solve for [tex]\( r \)[/tex]. First, re-arrange the electric field equation to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = \frac{k \cdot |q|}{E} \][/tex]
Next, take the square root of both sides to isolate [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{k \cdot |q|}{E}} \][/tex]
Substitute in the given values:
[tex]\[ r = \sqrt{\frac{8.99 \times 10^9 \ \text{N} \cdot \text{m}^2/\text{C}^2 \cdot 3 \times 10^{-6} \ \text{C}}{2.86 \times 10^5 \ \text{N/C}}} \][/tex]
Carefully calculate the value inside the square root:
[tex]\[ r = \sqrt{\frac{8.99 \times 10^9 \cdot 3 \times 10^{-6}}{2.86 \times 10^5}} \][/tex]
[tex]\[ r = \sqrt{\frac{26.97 \times 10^3}{2.86 \times 10^5}} \][/tex]
[tex]\[ r = \sqrt{0.094358 \text{ m}^2} \][/tex]
[tex]\[ r = 0.307084 \ \text{m} \][/tex]
To the nearest hundredth, the distance [tex]\( r \)[/tex] is:
[tex]\[ r = 0.31 \ \text{m} \][/tex]
Thus, the distance of the test charge from the source charge is [tex]\( \boxed{0.31} \ \text{meters} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.