At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the distance between the source charge and the test charge, we can use the formula for the electric field due to a point charge:
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
Where:
- [tex]\( E \)[/tex] is the electric field,
- [tex]\( k \)[/tex] is Coulomb's constant,
- [tex]\( q \)[/tex] is the source charge,
- [tex]\( r \)[/tex] is the distance from the source charge.
Given values:
- Source charge, [tex]\( q = 3 \times 10^{-6} \ \text{C} \)[/tex] (i.e., 3 microCoulombs converted to Coulombs),
- Electric field, [tex]\( E = 2.86 \times 10^5 \ \text{N/C} \)[/tex],
- Coulomb's constant, [tex]\( k = 8.99 \times 10^9 \ \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex].
Our goal is to solve for [tex]\( r \)[/tex]. First, re-arrange the electric field equation to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = \frac{k \cdot |q|}{E} \][/tex]
Next, take the square root of both sides to isolate [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{k \cdot |q|}{E}} \][/tex]
Substitute in the given values:
[tex]\[ r = \sqrt{\frac{8.99 \times 10^9 \ \text{N} \cdot \text{m}^2/\text{C}^2 \cdot 3 \times 10^{-6} \ \text{C}}{2.86 \times 10^5 \ \text{N/C}}} \][/tex]
Carefully calculate the value inside the square root:
[tex]\[ r = \sqrt{\frac{8.99 \times 10^9 \cdot 3 \times 10^{-6}}{2.86 \times 10^5}} \][/tex]
[tex]\[ r = \sqrt{\frac{26.97 \times 10^3}{2.86 \times 10^5}} \][/tex]
[tex]\[ r = \sqrt{0.094358 \text{ m}^2} \][/tex]
[tex]\[ r = 0.307084 \ \text{m} \][/tex]
To the nearest hundredth, the distance [tex]\( r \)[/tex] is:
[tex]\[ r = 0.31 \ \text{m} \][/tex]
Thus, the distance of the test charge from the source charge is [tex]\( \boxed{0.31} \ \text{meters} \)[/tex].
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
Where:
- [tex]\( E \)[/tex] is the electric field,
- [tex]\( k \)[/tex] is Coulomb's constant,
- [tex]\( q \)[/tex] is the source charge,
- [tex]\( r \)[/tex] is the distance from the source charge.
Given values:
- Source charge, [tex]\( q = 3 \times 10^{-6} \ \text{C} \)[/tex] (i.e., 3 microCoulombs converted to Coulombs),
- Electric field, [tex]\( E = 2.86 \times 10^5 \ \text{N/C} \)[/tex],
- Coulomb's constant, [tex]\( k = 8.99 \times 10^9 \ \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex].
Our goal is to solve for [tex]\( r \)[/tex]. First, re-arrange the electric field equation to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = \frac{k \cdot |q|}{E} \][/tex]
Next, take the square root of both sides to isolate [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{k \cdot |q|}{E}} \][/tex]
Substitute in the given values:
[tex]\[ r = \sqrt{\frac{8.99 \times 10^9 \ \text{N} \cdot \text{m}^2/\text{C}^2 \cdot 3 \times 10^{-6} \ \text{C}}{2.86 \times 10^5 \ \text{N/C}}} \][/tex]
Carefully calculate the value inside the square root:
[tex]\[ r = \sqrt{\frac{8.99 \times 10^9 \cdot 3 \times 10^{-6}}{2.86 \times 10^5}} \][/tex]
[tex]\[ r = \sqrt{\frac{26.97 \times 10^3}{2.86 \times 10^5}} \][/tex]
[tex]\[ r = \sqrt{0.094358 \text{ m}^2} \][/tex]
[tex]\[ r = 0.307084 \ \text{m} \][/tex]
To the nearest hundredth, the distance [tex]\( r \)[/tex] is:
[tex]\[ r = 0.31 \ \text{m} \][/tex]
Thus, the distance of the test charge from the source charge is [tex]\( \boxed{0.31} \ \text{meters} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.