At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the number of speakers that should be sold to maximize profit given the profit function [tex]\( P(x) = 3 + x - 5x^2 \)[/tex], we need to follow a series of steps involving calculus.
1. Identify the Profit Function:
The profit function is given by:
[tex]\[ P(x) = 3 + x - 5x^2 \][/tex]
where [tex]\( x \)[/tex] represents the number of thousand speakers sold.
2. Find the First Derivative:
To find the critical points, we first need to compute the first derivative of [tex]\( P(x) \)[/tex]. The first derivative, [tex]\( P'(x) \)[/tex], represents the rate of change of profit with respect to the number of speakers sold.
[tex]\[ P'(x) = \frac{d}{dx} (3 + x - 5x^2) = 1 - 10x \][/tex]
3. Set the First Derivative to Zero:
The critical points occur where the first derivative is zero. We solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ 1 - 10x = 0 \][/tex]
[tex]\[ 10x = 1 \][/tex]
[tex]\[ x = \frac{1}{10} \][/tex]
4. Find the Second Derivative:
To determine whether this critical point is a maximum or minimum, we can use the second derivative test. We compute the second derivative of [tex]\( P(x) \)[/tex]:
[tex]\[ P''(x) = \frac{d}{dx} (1 - 10x) = -10 \][/tex]
5. Evaluate the Second Derivative at the Critical Point:
We evaluate the second derivative at [tex]\( x = \frac{1}{10} \)[/tex]:
[tex]\[ P''\left( \frac{1}{10} \right) = -10 \][/tex]
Since [tex]\( P''\left( \frac{1}{10} \right) = -10 \)[/tex] is negative, the critical point [tex]\( x = \frac{1}{10} \)[/tex] is a local maximum.
6. Conclude the Optimal Number of Speakers:
Therefore, to maximize the profit, the number of speakers [tex]\( x \)[/tex] that should be sold is [tex]\( \frac{1}{10} \)[/tex] thousand, which is equivalent to 100 speakers.
Therefore, to maximize profit, you should sell [tex]\( \boxed{100} \)[/tex] speakers.
1. Identify the Profit Function:
The profit function is given by:
[tex]\[ P(x) = 3 + x - 5x^2 \][/tex]
where [tex]\( x \)[/tex] represents the number of thousand speakers sold.
2. Find the First Derivative:
To find the critical points, we first need to compute the first derivative of [tex]\( P(x) \)[/tex]. The first derivative, [tex]\( P'(x) \)[/tex], represents the rate of change of profit with respect to the number of speakers sold.
[tex]\[ P'(x) = \frac{d}{dx} (3 + x - 5x^2) = 1 - 10x \][/tex]
3. Set the First Derivative to Zero:
The critical points occur where the first derivative is zero. We solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ 1 - 10x = 0 \][/tex]
[tex]\[ 10x = 1 \][/tex]
[tex]\[ x = \frac{1}{10} \][/tex]
4. Find the Second Derivative:
To determine whether this critical point is a maximum or minimum, we can use the second derivative test. We compute the second derivative of [tex]\( P(x) \)[/tex]:
[tex]\[ P''(x) = \frac{d}{dx} (1 - 10x) = -10 \][/tex]
5. Evaluate the Second Derivative at the Critical Point:
We evaluate the second derivative at [tex]\( x = \frac{1}{10} \)[/tex]:
[tex]\[ P''\left( \frac{1}{10} \right) = -10 \][/tex]
Since [tex]\( P''\left( \frac{1}{10} \right) = -10 \)[/tex] is negative, the critical point [tex]\( x = \frac{1}{10} \)[/tex] is a local maximum.
6. Conclude the Optimal Number of Speakers:
Therefore, to maximize the profit, the number of speakers [tex]\( x \)[/tex] that should be sold is [tex]\( \frac{1}{10} \)[/tex] thousand, which is equivalent to 100 speakers.
Therefore, to maximize profit, you should sell [tex]\( \boxed{100} \)[/tex] speakers.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.