Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Two men each have a mass of 90 kg. If the gravitational force between them is [tex]$8.64 \times 10^{-8} N$[/tex], how far apart are they? [tex]$G = 6.67 \times 10^{-11} N \cdot (m/kg)^2$[/tex]

A. 4.0 m
B. 3.2 m
C. 5.0 m
D. 2.5 m

Sagot :

Certainly! Let's solve this problem step-by-step.

We are asked to find the distance between two men, each with a mass of 90 kg, given the gravitational force between them is [tex]\(8.64 \times 10^{-8}\)[/tex] N. The gravitational constant [tex]\(G\)[/tex] is [tex]\(6.67 \times 10^{-11} \text{ N} \cdot \left( \frac{\text{m}^2}{\text{kg}^2} \right)\)[/tex].

We start by recalling the formula for the gravitational force between two masses:

[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]

Where:
- [tex]\(F\)[/tex] is the gravitational force,
- [tex]\(G\)[/tex] is the gravitational constant,
- [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] are the masses,
- [tex]\(r\)[/tex] is the distance between the centers of the two masses.

Given:
- [tex]\(m_1 = 90 \text{ kg}\)[/tex],
- [tex]\(m_2 = 90 \text{ kg}\)[/tex],
- [tex]\(F = 8.64 \times 10^{-8} \text{ N}\)[/tex],
- [tex]\(G = 6.67 \times 10^{-11} \text{ N} \cdot \left( \frac{\text{m}^2}{\text{kg}^2} \right)\)[/tex].

We need to solve for [tex]\(r\)[/tex]. Rearranging the formula to solve for [tex]\(r\)[/tex]:

[tex]\[ r^2 = G \cdot \frac{m_1 \cdot m_2}{F} \][/tex]

Substituting the given values into the equation:

[tex]\[ r^2 = 6.67 \times 10^{-11} \text{ N} \cdot \left( \frac{\text{m}^2}{\text{kg}^2} \right) \cdot \frac{90 \text{ kg} \cdot 90 \text{ kg}}{8.64 \times 10^{-8} \text{ N}} \][/tex]

First, let's compute the numerator and the denominator separately:

[tex]\[ \text{Numerator} = 6.67 \times 10^{-11} \text{ N} \cdot \left( \frac{\text{m}^2}{\text{kg}^2} \right) \cdot 8100 \text{ kg}^2 \][/tex]
[tex]\[ \text{Numerator} = 6.67 \times 10^{-11} \cdot 8100 \text{ m}^2 \][/tex]
[tex]\[ \text{Numerator} = 5.4027 \times 10^{-7} \text{ m}^2 \][/tex]

[tex]\[ \text{Denominator} = 8.64 \times 10^{-8} \text{ N} \][/tex]

Now, divide the two results to find [tex]\(r^2\)[/tex]:

[tex]\[ r^2 = \frac{5.4027 \times 10^{-7} \text{ m}^2}{8.64 \times 10^{-8} \text{ N}} \][/tex]
[tex]\[ r^2 \approx 6.25 \text{ m}^2 \][/tex]

Finally, take the square root of both sides to solve for [tex]\(r\)[/tex]:

[tex]\[ r = \sqrt{6.25 \text{ m}^2} \][/tex]
[tex]\[ r \approx 2.50 \text{ m} \][/tex]

Thus, the distance between the two men is approximately 2.5 meters.

The correct answer is:
D. 2.5 m
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.