Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the new vertices of side [tex]\( A'C' \)[/tex] after dilating the triangle with vertices [tex]\( A=(-3, -2) \)[/tex], [tex]\( B=(-1, 3) \)[/tex], and [tex]\( C=(2, 1) \)[/tex] by a scale factor of 4, we need to follow these steps:
1. Identify the original coordinates of the vertices:
- [tex]\( A = (-3, -2) \)[/tex]
- [tex]\( B = (-1, 3) \)[/tex]
- [tex]\( C = (2, 1) \)[/tex]
2. Apply the scale factor to each coordinate:
The formula for dilation by a scale factor [tex]\( k \)[/tex] involves multiplying each coordinate by [tex]\( k \)[/tex]. Here, our scale factor is [tex]\( 4 \)[/tex].
3. Calculate the new coordinates for vertex [tex]\( A' \)[/tex]:
[tex]\[ A' = (4 \times -3, 4 \times -2) = (-12, -8) \][/tex]
4. Calculate the new coordinates for vertex [tex]\( B' \)[/tex]:
As [tex]\( B \)[/tex] is not part of side [tex]\( A'C' \)[/tex], in this question context, we focus on calculating the coordinates of [tex]\( A' \)[/tex] and [tex]\( C' \)[/tex]. However, for completeness:
[tex]\[ B' = (4 \times -1, 4 \times 3) = (-4, 12) \][/tex]
5. Calculate the new coordinates for vertex [tex]\( C' \)[/tex]:
[tex]\[ C' = (4 \times 2, 4 \times 1) = (8, 4) \][/tex]
6. Determine the location of side [tex]\( A'C' \)[/tex]:
After dilating the triangle, the new coordinates for the vertices of side [tex]\( A'C' \)[/tex] are:
[tex]\[ A' = (-12, -8) \][/tex]
[tex]\[ C' = (8, 4) \][/tex]
Thus, the new vertices of side [tex]\( A'C' \)[/tex] are [tex]\( A' = (-12, -8) \)[/tex] and [tex]\( C' = (8, 4) \)[/tex].
1. Identify the original coordinates of the vertices:
- [tex]\( A = (-3, -2) \)[/tex]
- [tex]\( B = (-1, 3) \)[/tex]
- [tex]\( C = (2, 1) \)[/tex]
2. Apply the scale factor to each coordinate:
The formula for dilation by a scale factor [tex]\( k \)[/tex] involves multiplying each coordinate by [tex]\( k \)[/tex]. Here, our scale factor is [tex]\( 4 \)[/tex].
3. Calculate the new coordinates for vertex [tex]\( A' \)[/tex]:
[tex]\[ A' = (4 \times -3, 4 \times -2) = (-12, -8) \][/tex]
4. Calculate the new coordinates for vertex [tex]\( B' \)[/tex]:
As [tex]\( B \)[/tex] is not part of side [tex]\( A'C' \)[/tex], in this question context, we focus on calculating the coordinates of [tex]\( A' \)[/tex] and [tex]\( C' \)[/tex]. However, for completeness:
[tex]\[ B' = (4 \times -1, 4 \times 3) = (-4, 12) \][/tex]
5. Calculate the new coordinates for vertex [tex]\( C' \)[/tex]:
[tex]\[ C' = (4 \times 2, 4 \times 1) = (8, 4) \][/tex]
6. Determine the location of side [tex]\( A'C' \)[/tex]:
After dilating the triangle, the new coordinates for the vertices of side [tex]\( A'C' \)[/tex] are:
[tex]\[ A' = (-12, -8) \][/tex]
[tex]\[ C' = (8, 4) \][/tex]
Thus, the new vertices of side [tex]\( A'C' \)[/tex] are [tex]\( A' = (-12, -8) \)[/tex] and [tex]\( C' = (8, 4) \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.