Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the new vertices of side [tex]\( A'C' \)[/tex] after dilating the triangle with vertices [tex]\( A=(-3, -2) \)[/tex], [tex]\( B=(-1, 3) \)[/tex], and [tex]\( C=(2, 1) \)[/tex] by a scale factor of 4, we need to follow these steps:
1. Identify the original coordinates of the vertices:
- [tex]\( A = (-3, -2) \)[/tex]
- [tex]\( B = (-1, 3) \)[/tex]
- [tex]\( C = (2, 1) \)[/tex]
2. Apply the scale factor to each coordinate:
The formula for dilation by a scale factor [tex]\( k \)[/tex] involves multiplying each coordinate by [tex]\( k \)[/tex]. Here, our scale factor is [tex]\( 4 \)[/tex].
3. Calculate the new coordinates for vertex [tex]\( A' \)[/tex]:
[tex]\[ A' = (4 \times -3, 4 \times -2) = (-12, -8) \][/tex]
4. Calculate the new coordinates for vertex [tex]\( B' \)[/tex]:
As [tex]\( B \)[/tex] is not part of side [tex]\( A'C' \)[/tex], in this question context, we focus on calculating the coordinates of [tex]\( A' \)[/tex] and [tex]\( C' \)[/tex]. However, for completeness:
[tex]\[ B' = (4 \times -1, 4 \times 3) = (-4, 12) \][/tex]
5. Calculate the new coordinates for vertex [tex]\( C' \)[/tex]:
[tex]\[ C' = (4 \times 2, 4 \times 1) = (8, 4) \][/tex]
6. Determine the location of side [tex]\( A'C' \)[/tex]:
After dilating the triangle, the new coordinates for the vertices of side [tex]\( A'C' \)[/tex] are:
[tex]\[ A' = (-12, -8) \][/tex]
[tex]\[ C' = (8, 4) \][/tex]
Thus, the new vertices of side [tex]\( A'C' \)[/tex] are [tex]\( A' = (-12, -8) \)[/tex] and [tex]\( C' = (8, 4) \)[/tex].
1. Identify the original coordinates of the vertices:
- [tex]\( A = (-3, -2) \)[/tex]
- [tex]\( B = (-1, 3) \)[/tex]
- [tex]\( C = (2, 1) \)[/tex]
2. Apply the scale factor to each coordinate:
The formula for dilation by a scale factor [tex]\( k \)[/tex] involves multiplying each coordinate by [tex]\( k \)[/tex]. Here, our scale factor is [tex]\( 4 \)[/tex].
3. Calculate the new coordinates for vertex [tex]\( A' \)[/tex]:
[tex]\[ A' = (4 \times -3, 4 \times -2) = (-12, -8) \][/tex]
4. Calculate the new coordinates for vertex [tex]\( B' \)[/tex]:
As [tex]\( B \)[/tex] is not part of side [tex]\( A'C' \)[/tex], in this question context, we focus on calculating the coordinates of [tex]\( A' \)[/tex] and [tex]\( C' \)[/tex]. However, for completeness:
[tex]\[ B' = (4 \times -1, 4 \times 3) = (-4, 12) \][/tex]
5. Calculate the new coordinates for vertex [tex]\( C' \)[/tex]:
[tex]\[ C' = (4 \times 2, 4 \times 1) = (8, 4) \][/tex]
6. Determine the location of side [tex]\( A'C' \)[/tex]:
After dilating the triangle, the new coordinates for the vertices of side [tex]\( A'C' \)[/tex] are:
[tex]\[ A' = (-12, -8) \][/tex]
[tex]\[ C' = (8, 4) \][/tex]
Thus, the new vertices of side [tex]\( A'C' \)[/tex] are [tex]\( A' = (-12, -8) \)[/tex] and [tex]\( C' = (8, 4) \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.