At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the gravitational force between two masses, we use Newton's law of universal gravitation, which is given by the formula:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \: \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, each 8 kg in this case,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses, which is 2 meters in this case.
Given:
- [tex]\( m_1 = 8 \: \text{kg} \)[/tex]
- [tex]\( m_2 = 8 \: \text{kg} \)[/tex]
- [tex]\( r = 2 \: \text{m} \)[/tex]
Substitute these values into the formula:
[tex]\[ F = 6.67 \times 10^{-11} \frac{8 \: \text{kg} \cdot 8 \: \text{kg}}{(2 \: \text{m})^2} \][/tex]
First, calculate the numerator:
[tex]\[ 8 \: \text{kg} \cdot 8 \: \text{kg} = 64 \: \text{kg}^2 \][/tex]
Next, calculate the denominator:
[tex]\[ (2 \: \text{m})^2 = 4 \: \text{m}^2 \][/tex]
Now, substitute these into the equation:
[tex]\[ F = 6.67 \times 10^{-11} \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} = 16 \: \text{kg}^2 / \text{m}^2 \][/tex]
So the force now is:
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \: \text{N} \][/tex]
Multiplying these values:
[tex]\[ F = 6.67 \times 16 \times 10^{-11} \][/tex]
[tex]\[ F = 106.72 \times 10^{-11} \][/tex]
[tex]\[ F = 1.0672 \times 10^{-9} \: \text{N} \][/tex]
Hence, the gravitational force between the two bowling balls is:
[tex]\[ \boxed{1.07 \times 10^{-9} \: \text{N}} \][/tex]
So, the correct answer is:
A. [tex]\( 1.07 \times 10^{-9} \: \text{N} \)[/tex]
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \: \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, each 8 kg in this case,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses, which is 2 meters in this case.
Given:
- [tex]\( m_1 = 8 \: \text{kg} \)[/tex]
- [tex]\( m_2 = 8 \: \text{kg} \)[/tex]
- [tex]\( r = 2 \: \text{m} \)[/tex]
Substitute these values into the formula:
[tex]\[ F = 6.67 \times 10^{-11} \frac{8 \: \text{kg} \cdot 8 \: \text{kg}}{(2 \: \text{m})^2} \][/tex]
First, calculate the numerator:
[tex]\[ 8 \: \text{kg} \cdot 8 \: \text{kg} = 64 \: \text{kg}^2 \][/tex]
Next, calculate the denominator:
[tex]\[ (2 \: \text{m})^2 = 4 \: \text{m}^2 \][/tex]
Now, substitute these into the equation:
[tex]\[ F = 6.67 \times 10^{-11} \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} = 16 \: \text{kg}^2 / \text{m}^2 \][/tex]
So the force now is:
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \: \text{N} \][/tex]
Multiplying these values:
[tex]\[ F = 6.67 \times 16 \times 10^{-11} \][/tex]
[tex]\[ F = 106.72 \times 10^{-11} \][/tex]
[tex]\[ F = 1.0672 \times 10^{-9} \: \text{N} \][/tex]
Hence, the gravitational force between the two bowling balls is:
[tex]\[ \boxed{1.07 \times 10^{-9} \: \text{N}} \][/tex]
So, the correct answer is:
A. [tex]\( 1.07 \times 10^{-9} \: \text{N} \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.