Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the given system of equations:
[tex]\[ \begin{cases} x^2 + 2x + y = -2 \\ y = x - 6 \end{cases} \][/tex]
we can follow these steps:
1. Substitute the second equation into the first equation:
The second equation is [tex]\(y = x - 6\)[/tex]. We substitute [tex]\(y\)[/tex] in the first equation:
[tex]\[ x^2 + 2x + (x - 6) = -2 \][/tex]
2. Simplify the equation:
Combine like terms:
[tex]\[ x^2 + 2x + x - 6 = -2 \][/tex]
[tex]\[ x^2 + 3x - 6 = -2 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
Move [tex]\(-2\)[/tex] to the left side of the equation:
[tex]\[ x^2 + 3x - 6 + 2 = 0 \][/tex]
[tex]\[ x^2 + 3x - 4 = 0 \][/tex]
This is a quadratic equation. To solve it, we factor the quadratic:
[tex]\[ x^2 + 3x - 4 = (x + 4)(x - 1) = 0 \][/tex]
Setting each factor to zero gives the solutions for [tex]\(x\)[/tex]:
[tex]\[ x + 4 = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
[tex]\[ x = -4 \quad \text{or} \quad x = 1 \][/tex]
4. Find the corresponding [tex]\(y\)[/tex]-values:
Using the second equation [tex]\(y = x - 6\)[/tex], we find the [tex]\(y\)[/tex]-values corresponding to each [tex]\(x\)[/tex]-value:
- For [tex]\(x = -4\)[/tex]:
[tex]\[ y = -4 - 6 = -10 \][/tex]
- For [tex]\(x = 1\)[/tex]:
[tex]\[ y = 1 - 6 = -5 \][/tex]
5. Identify the solutions:
We have the pairs [tex]\((x, y)\)[/tex]:
[tex]\[ (-4, -10) \quad \text{and} \quad (1, -5) \][/tex]
Among these solutions, the [tex]\(x\)[/tex]-value of [tex]\(-4\)[/tex] is more negative than [tex]\(1\)[/tex].
So, the solution with the more negative [tex]\(x\)[/tex] is:
[tex]\[ \boxed{-4} \][/tex]
The other (possibly repeated) solution is:
[tex]\[ \boxed{1} \][/tex]
[tex]\[ \begin{cases} x^2 + 2x + y = -2 \\ y = x - 6 \end{cases} \][/tex]
we can follow these steps:
1. Substitute the second equation into the first equation:
The second equation is [tex]\(y = x - 6\)[/tex]. We substitute [tex]\(y\)[/tex] in the first equation:
[tex]\[ x^2 + 2x + (x - 6) = -2 \][/tex]
2. Simplify the equation:
Combine like terms:
[tex]\[ x^2 + 2x + x - 6 = -2 \][/tex]
[tex]\[ x^2 + 3x - 6 = -2 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
Move [tex]\(-2\)[/tex] to the left side of the equation:
[tex]\[ x^2 + 3x - 6 + 2 = 0 \][/tex]
[tex]\[ x^2 + 3x - 4 = 0 \][/tex]
This is a quadratic equation. To solve it, we factor the quadratic:
[tex]\[ x^2 + 3x - 4 = (x + 4)(x - 1) = 0 \][/tex]
Setting each factor to zero gives the solutions for [tex]\(x\)[/tex]:
[tex]\[ x + 4 = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
[tex]\[ x = -4 \quad \text{or} \quad x = 1 \][/tex]
4. Find the corresponding [tex]\(y\)[/tex]-values:
Using the second equation [tex]\(y = x - 6\)[/tex], we find the [tex]\(y\)[/tex]-values corresponding to each [tex]\(x\)[/tex]-value:
- For [tex]\(x = -4\)[/tex]:
[tex]\[ y = -4 - 6 = -10 \][/tex]
- For [tex]\(x = 1\)[/tex]:
[tex]\[ y = 1 - 6 = -5 \][/tex]
5. Identify the solutions:
We have the pairs [tex]\((x, y)\)[/tex]:
[tex]\[ (-4, -10) \quad \text{and} \quad (1, -5) \][/tex]
Among these solutions, the [tex]\(x\)[/tex]-value of [tex]\(-4\)[/tex] is more negative than [tex]\(1\)[/tex].
So, the solution with the more negative [tex]\(x\)[/tex] is:
[tex]\[ \boxed{-4} \][/tex]
The other (possibly repeated) solution is:
[tex]\[ \boxed{1} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.