Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Solve the following system of equations:
[tex]\[
\begin{array}{l}
x^2 + 2x + y = -2 \\
y = x - 6
\end{array}
\][/tex]

The solution with the more negative [tex]\( x \)[/tex] is: [tex]\(\square\)[/tex]

The other (possibly repeated) solution is: [tex]\(\square\)[/tex]


Sagot :

To solve the given system of equations:

[tex]\[ \begin{cases} x^2 + 2x + y = -2 \\ y = x - 6 \end{cases} \][/tex]

we can follow these steps:

1. Substitute the second equation into the first equation:

The second equation is [tex]\(y = x - 6\)[/tex]. We substitute [tex]\(y\)[/tex] in the first equation:

[tex]\[ x^2 + 2x + (x - 6) = -2 \][/tex]

2. Simplify the equation:

Combine like terms:

[tex]\[ x^2 + 2x + x - 6 = -2 \][/tex]
[tex]\[ x^2 + 3x - 6 = -2 \][/tex]

3. Solve for [tex]\(x\)[/tex]:

Move [tex]\(-2\)[/tex] to the left side of the equation:

[tex]\[ x^2 + 3x - 6 + 2 = 0 \][/tex]
[tex]\[ x^2 + 3x - 4 = 0 \][/tex]

This is a quadratic equation. To solve it, we factor the quadratic:

[tex]\[ x^2 + 3x - 4 = (x + 4)(x - 1) = 0 \][/tex]

Setting each factor to zero gives the solutions for [tex]\(x\)[/tex]:

[tex]\[ x + 4 = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
[tex]\[ x = -4 \quad \text{or} \quad x = 1 \][/tex]

4. Find the corresponding [tex]\(y\)[/tex]-values:

Using the second equation [tex]\(y = x - 6\)[/tex], we find the [tex]\(y\)[/tex]-values corresponding to each [tex]\(x\)[/tex]-value:

- For [tex]\(x = -4\)[/tex]:

[tex]\[ y = -4 - 6 = -10 \][/tex]

- For [tex]\(x = 1\)[/tex]:

[tex]\[ y = 1 - 6 = -5 \][/tex]

5. Identify the solutions:

We have the pairs [tex]\((x, y)\)[/tex]:

[tex]\[ (-4, -10) \quad \text{and} \quad (1, -5) \][/tex]

Among these solutions, the [tex]\(x\)[/tex]-value of [tex]\(-4\)[/tex] is more negative than [tex]\(1\)[/tex].

So, the solution with the more negative [tex]\(x\)[/tex] is:

[tex]\[ \boxed{-4} \][/tex]

The other (possibly repeated) solution is:

[tex]\[ \boxed{1} \][/tex]