Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the value of [tex]\( c \)[/tex] in the perfect square trinomial [tex]\( x^2 + 10x + c \)[/tex], we follow these steps:
1. Identify the standard form of a perfect square trinomial:
- The standard form of a perfect square trinomial is [tex]\((x + b)^2 = x^2 + 2bx + b^2\)[/tex].
2. Relate the given trinomial to the standard form:
- The given trinomial is [tex]\( x^2 + 10x + c \)[/tex].
- By comparing [tex]\( x^2 + 10x + c \)[/tex] to [tex]\( x^2 + 2bx + b^2 \)[/tex], we see that [tex]\( 2b \)[/tex] corresponds to the coefficient of the linear term (which is 10 in this case).
3. Determine the value of [tex]\( b \)[/tex]:
- Given [tex]\( 2b = 10 \)[/tex], we solve for [tex]\( b \)[/tex] by dividing both sides by 2:
[tex]\[ b = \frac{10}{2} = 5 \][/tex]
4. Calculate the value of [tex]\( c \)[/tex]:
- In the perfect square trinomial formula [tex]\( x^2 + 2bx + b^2 \)[/tex], the constant term [tex]\( c \)[/tex] is equal to [tex]\( b^2 \)[/tex].
- Substitute [tex]\( b = 5 \)[/tex] to find [tex]\( c \)[/tex]:
[tex]\[ c = b^2 = 5^2 = 25 \][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 25 \)[/tex].
So, [tex]\( c = 25 \)[/tex].
1. Identify the standard form of a perfect square trinomial:
- The standard form of a perfect square trinomial is [tex]\((x + b)^2 = x^2 + 2bx + b^2\)[/tex].
2. Relate the given trinomial to the standard form:
- The given trinomial is [tex]\( x^2 + 10x + c \)[/tex].
- By comparing [tex]\( x^2 + 10x + c \)[/tex] to [tex]\( x^2 + 2bx + b^2 \)[/tex], we see that [tex]\( 2b \)[/tex] corresponds to the coefficient of the linear term (which is 10 in this case).
3. Determine the value of [tex]\( b \)[/tex]:
- Given [tex]\( 2b = 10 \)[/tex], we solve for [tex]\( b \)[/tex] by dividing both sides by 2:
[tex]\[ b = \frac{10}{2} = 5 \][/tex]
4. Calculate the value of [tex]\( c \)[/tex]:
- In the perfect square trinomial formula [tex]\( x^2 + 2bx + b^2 \)[/tex], the constant term [tex]\( c \)[/tex] is equal to [tex]\( b^2 \)[/tex].
- Substitute [tex]\( b = 5 \)[/tex] to find [tex]\( c \)[/tex]:
[tex]\[ c = b^2 = 5^2 = 25 \][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 25 \)[/tex].
So, [tex]\( c = 25 \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.