Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
### Given Data:
- Parametric equations for the particle:
[tex]\[ x = 4 \alpha \cos^3(\mu), \quad y = 4 \alpha \sin^3(\mu), \quad z = 3 \phi \cos(2 \mu) \][/tex]
### Part (a): Finding the Velocity and Acceleration
1. Velocity Components
- The velocity vector [tex]\(\mathbf{v}\)[/tex] is obtained by differentiating the position vector with respect to time [tex]\(t\)[/tex]:
[tex]\[ v_x = \frac{dx}{dt} = \frac{d}{dt}[4 \alpha \cos^3(\mu)] \][/tex]
[tex]\[ v_x = 4 \alpha \cdot 3 \cos^2(\mu) \cdot (-\sin(\mu)) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_y = \frac{dy}{dt} = \frac{d}{dt}[4 \alpha \sin^3(\mu)] \][/tex]
[tex]\[ v_y = 4 \alpha \cdot 3 \sin^2(\mu) \cdot \cos(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_y = 12 \alpha \sin^2(\mu) \cos(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_z = \frac{dz}{dt} = \frac{d}{dt}[3 \phi \cos(2 \mu)] \][/tex]
[tex]\[ v_z = 3 \phi \cdot (-2 \sin(2 \mu)) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_z = -6 \phi \sin(2 \mu) \cdot \frac{d\mu}{dt} \][/tex]
Simplifying the expressions, the velocity components become:
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu) \][/tex]
[tex]\[ v_y = 12 \alpha \sin^2(\mu) \cos(\mu) \][/tex]
[tex]\[ v_z = -6 \phi \sin(2 \mu) \][/tex]
2. Acceleration Components
- The acceleration vector [tex]\(\mathbf{a}\)[/tex] is the time derivative of the velocity vector:
[tex]\[ a_x = \frac{dv_x}{dt} = \frac{d}{dt}[-12 \alpha \cos^2(\mu) \sin(\mu)] \][/tex]
Expanding using the product rule:
[tex]\[ a_x = -12 \alpha \left[\cos^2(\mu) \cdot \frac{d}{dt}[\sin(\mu)] + \sin(\mu) \cdot \frac{d}{dt}[\cos^2(\mu)]\right] \][/tex]
Simplifying:
[tex]\[ a_x = -12 \alpha \left[ \cos^2(\mu) (\cos(\mu) \cdot \frac{d\mu}{dt}) + \sin(\mu) \cdot 2 \cos(\mu) \cdot (-\sin(\mu)) \cdot \frac{d\mu}{dt} \right] \][/tex]
[tex]\[ a_x = -12 \alpha \cos(\mu) \cdot \frac{d\mu}{dt} \left[ \cos^2(\mu) - 2 \sin^2(\mu) \right] \][/tex]
Removing the dependency on [tex]\( \frac{d\mu}{dt} \)[/tex]:
[tex]\[ a_x = -12 \alpha [\cos^2(\mu) - 2 \sin^2(\mu)] \cos(\mu) \][/tex]
[tex]\[ a_y = \frac{dv_y}{dt} = \frac{d}{dt}[12 \alpha \sin^2(\mu) \cos(\mu)] \][/tex]
Expanding using the product rule:
[tex]\[ a_y = 12 \alpha \left[\sin^2(\mu) \cdot \frac{d}{dt}[\cos(\mu)] + \cos(\mu) \cdot \frac{d}{dt}[\sin^2(\mu)]\right] \][/tex]
Simplifying:
[tex]\[ a_y = 12 \alpha \left[ \sin^2(\mu) (-\sin(\mu) \cdot \frac{d\mu}{dt}) + \cos(\mu) \cdot 2 \sin(\mu) \cos(\mu) \cdot \frac{d\mu}{dt} \right] \][/tex]
[tex]\[ a_y = 12 \alpha \sin(\mu) \cdot \frac{d\mu}{dt} \left[ 2 \cos^2(\mu) - \sin^2(\mu) \right] \][/tex]
[tex]\[ a_y = 12 \alpha [2 \cos^2(\mu) - \sin^2(\mu)] \sin(\mu) \][/tex]
[tex]\[ a_z = \frac{dv_z}{dt} = \frac{d}{dt}[-6 \phi \sin(2 \mu)] \][/tex]
[tex]\[ a_z = -6 \phi \cdot 2 \cos(2 \mu) \cdot \frac{d\mu}{dt} \][/tex]
Simplifying:
[tex]\[ a_z = -12 \phi \cos(2 \mu) \][/tex]
### Part (b): Evaluating the Dot Product [tex]\( \mathbf{r} \cdot \mathbf{v} \)[/tex]
The dot product is given by:
[tex]\[ \mathbf{r} \cdot \mathbf{v} = x v_x + y v_y + z v_z \][/tex]
Substitute the given expressions:
[tex]\[ x = 4 \alpha \cos^3(\mu), \quad y = 4 \alpha \sin^3(\mu), \quad z = 3 \phi \cos(2 \mu) \][/tex]
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu), \quad v_y = 12 \alpha \sin^2(\mu) \cos(\mu), \quad v_z = -6 \phi \sin(2 \mu) \][/tex]
Calculate the individual products:
[tex]\[ x v_x = (4 \alpha \cos^3(\mu)) (-12 \alpha \cos^2(\mu) \sin(\mu)) \][/tex]
[tex]\[ x v_x = -48 \alpha^2 \cos^5(\mu) \sin(\mu) \][/tex]
[tex]\[ y v_y = (4 \alpha \sin^3(\mu)) (12 \alpha \sin^2(\mu) \cos(\mu)) \][/tex]
[tex]\[ y v_y = 48 \alpha^2 \sin^5(\mu) \cos(\mu) \][/tex]
[tex]\[ z v_z = (3 \phi \cos(2 \mu)) (-6 \phi \sin(2 \mu)) \][/tex]
[tex]\[ z v_z = -18 \phi^2 \cos(2 \mu) \sin(2 \mu) \][/tex]
Using trigonometric identities:
[tex]\[ \cos(2 \mu) \sin(2 \mu) = \frac{1}{2} \sin(4 \mu) \][/tex]
[tex]\[ z v_z = -18 \phi^2 \cdot \frac{1}{2} \sin(4 \mu) \][/tex]
[tex]\[ z v_z = -9 \phi^2 \sin(4 \mu) \][/tex]
Thus, the dot product [tex]\( \mathbf{r} \cdot \mathbf{v} \)[/tex] becomes:enzen
[tex]\[ \mathbf{r} \cdot \mathbf{v} = -48 \alpha^2 \cos^5(\mu) \sin(\mu) + 48 \alpha^2 \sin^5(\mu) \cos(\mu) - 9 \phi^2 \sin(4 \mu) \][/tex]
Therefore, the velocity, acceleration, and the dot product vector for the particle are as derived above.
- Parametric equations for the particle:
[tex]\[ x = 4 \alpha \cos^3(\mu), \quad y = 4 \alpha \sin^3(\mu), \quad z = 3 \phi \cos(2 \mu) \][/tex]
### Part (a): Finding the Velocity and Acceleration
1. Velocity Components
- The velocity vector [tex]\(\mathbf{v}\)[/tex] is obtained by differentiating the position vector with respect to time [tex]\(t\)[/tex]:
[tex]\[ v_x = \frac{dx}{dt} = \frac{d}{dt}[4 \alpha \cos^3(\mu)] \][/tex]
[tex]\[ v_x = 4 \alpha \cdot 3 \cos^2(\mu) \cdot (-\sin(\mu)) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_y = \frac{dy}{dt} = \frac{d}{dt}[4 \alpha \sin^3(\mu)] \][/tex]
[tex]\[ v_y = 4 \alpha \cdot 3 \sin^2(\mu) \cdot \cos(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_y = 12 \alpha \sin^2(\mu) \cos(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_z = \frac{dz}{dt} = \frac{d}{dt}[3 \phi \cos(2 \mu)] \][/tex]
[tex]\[ v_z = 3 \phi \cdot (-2 \sin(2 \mu)) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_z = -6 \phi \sin(2 \mu) \cdot \frac{d\mu}{dt} \][/tex]
Simplifying the expressions, the velocity components become:
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu) \][/tex]
[tex]\[ v_y = 12 \alpha \sin^2(\mu) \cos(\mu) \][/tex]
[tex]\[ v_z = -6 \phi \sin(2 \mu) \][/tex]
2. Acceleration Components
- The acceleration vector [tex]\(\mathbf{a}\)[/tex] is the time derivative of the velocity vector:
[tex]\[ a_x = \frac{dv_x}{dt} = \frac{d}{dt}[-12 \alpha \cos^2(\mu) \sin(\mu)] \][/tex]
Expanding using the product rule:
[tex]\[ a_x = -12 \alpha \left[\cos^2(\mu) \cdot \frac{d}{dt}[\sin(\mu)] + \sin(\mu) \cdot \frac{d}{dt}[\cos^2(\mu)]\right] \][/tex]
Simplifying:
[tex]\[ a_x = -12 \alpha \left[ \cos^2(\mu) (\cos(\mu) \cdot \frac{d\mu}{dt}) + \sin(\mu) \cdot 2 \cos(\mu) \cdot (-\sin(\mu)) \cdot \frac{d\mu}{dt} \right] \][/tex]
[tex]\[ a_x = -12 \alpha \cos(\mu) \cdot \frac{d\mu}{dt} \left[ \cos^2(\mu) - 2 \sin^2(\mu) \right] \][/tex]
Removing the dependency on [tex]\( \frac{d\mu}{dt} \)[/tex]:
[tex]\[ a_x = -12 \alpha [\cos^2(\mu) - 2 \sin^2(\mu)] \cos(\mu) \][/tex]
[tex]\[ a_y = \frac{dv_y}{dt} = \frac{d}{dt}[12 \alpha \sin^2(\mu) \cos(\mu)] \][/tex]
Expanding using the product rule:
[tex]\[ a_y = 12 \alpha \left[\sin^2(\mu) \cdot \frac{d}{dt}[\cos(\mu)] + \cos(\mu) \cdot \frac{d}{dt}[\sin^2(\mu)]\right] \][/tex]
Simplifying:
[tex]\[ a_y = 12 \alpha \left[ \sin^2(\mu) (-\sin(\mu) \cdot \frac{d\mu}{dt}) + \cos(\mu) \cdot 2 \sin(\mu) \cos(\mu) \cdot \frac{d\mu}{dt} \right] \][/tex]
[tex]\[ a_y = 12 \alpha \sin(\mu) \cdot \frac{d\mu}{dt} \left[ 2 \cos^2(\mu) - \sin^2(\mu) \right] \][/tex]
[tex]\[ a_y = 12 \alpha [2 \cos^2(\mu) - \sin^2(\mu)] \sin(\mu) \][/tex]
[tex]\[ a_z = \frac{dv_z}{dt} = \frac{d}{dt}[-6 \phi \sin(2 \mu)] \][/tex]
[tex]\[ a_z = -6 \phi \cdot 2 \cos(2 \mu) \cdot \frac{d\mu}{dt} \][/tex]
Simplifying:
[tex]\[ a_z = -12 \phi \cos(2 \mu) \][/tex]
### Part (b): Evaluating the Dot Product [tex]\( \mathbf{r} \cdot \mathbf{v} \)[/tex]
The dot product is given by:
[tex]\[ \mathbf{r} \cdot \mathbf{v} = x v_x + y v_y + z v_z \][/tex]
Substitute the given expressions:
[tex]\[ x = 4 \alpha \cos^3(\mu), \quad y = 4 \alpha \sin^3(\mu), \quad z = 3 \phi \cos(2 \mu) \][/tex]
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu), \quad v_y = 12 \alpha \sin^2(\mu) \cos(\mu), \quad v_z = -6 \phi \sin(2 \mu) \][/tex]
Calculate the individual products:
[tex]\[ x v_x = (4 \alpha \cos^3(\mu)) (-12 \alpha \cos^2(\mu) \sin(\mu)) \][/tex]
[tex]\[ x v_x = -48 \alpha^2 \cos^5(\mu) \sin(\mu) \][/tex]
[tex]\[ y v_y = (4 \alpha \sin^3(\mu)) (12 \alpha \sin^2(\mu) \cos(\mu)) \][/tex]
[tex]\[ y v_y = 48 \alpha^2 \sin^5(\mu) \cos(\mu) \][/tex]
[tex]\[ z v_z = (3 \phi \cos(2 \mu)) (-6 \phi \sin(2 \mu)) \][/tex]
[tex]\[ z v_z = -18 \phi^2 \cos(2 \mu) \sin(2 \mu) \][/tex]
Using trigonometric identities:
[tex]\[ \cos(2 \mu) \sin(2 \mu) = \frac{1}{2} \sin(4 \mu) \][/tex]
[tex]\[ z v_z = -18 \phi^2 \cdot \frac{1}{2} \sin(4 \mu) \][/tex]
[tex]\[ z v_z = -9 \phi^2 \sin(4 \mu) \][/tex]
Thus, the dot product [tex]\( \mathbf{r} \cdot \mathbf{v} \)[/tex] becomes:enzen
[tex]\[ \mathbf{r} \cdot \mathbf{v} = -48 \alpha^2 \cos^5(\mu) \sin(\mu) + 48 \alpha^2 \sin^5(\mu) \cos(\mu) - 9 \phi^2 \sin(4 \mu) \][/tex]
Therefore, the velocity, acceleration, and the dot product vector for the particle are as derived above.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.