Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the expected value of winning on the new "Wheel of Fortune," we can follow these steps:
Step 1: Identify the different amounts of money on the wheel and their respective numbers of slots.
There are:
- \[tex]$200 appears in 6 slots - \$[/tex]400 appears in 15 slots
- \[tex]$600 appears in 2 slots - \$[/tex]0 appears in 6 slots
- \[tex]$1000 appears in 1 slot - \$[/tex]20,000 (the car) appears in 1 slot
Step 2: Calculate the total number of slots on the wheel.
Total slots = [tex]\(6 + 15 + 2 + 6 + 1 + 1 = 31\)[/tex]
Step 3: Determine the probability of landing on each type of slot.
For each amount, the probability is calculated by dividing the number of specific slots by the total number of slots:
- Probability of \[tex]$200: \(\frac{6}{31}\) - Probability of \$[/tex]400: [tex]\(\frac{15}{31}\)[/tex]
- Probability of \[tex]$600: \(\frac{2}{31}\) - Probability of \$[/tex]0: [tex]\(\frac{6}{31}\)[/tex]
- Probability of \[tex]$1000: \(\frac{1}{31}\) - Probability of \$[/tex]20,000: [tex]\(\frac{1}{31}\)[/tex]
Step 4: Calculate the expected value.
The expected value [tex]\(E\)[/tex] is found by multiplying each monetary amount by its respective probability and summing the results:
[tex]\[ E = \left( 200 \times \frac{6}{31} \right) + \left( 400 \times \frac{15}{31} \right) + \left( 600 \times \frac{2}{31} \right) + \left( 0 \times \frac{6}{31} \right) + \left( 1000 \times \frac{1}{31} \right) + \left( 20000 \times \frac{1}{31} \right) \][/tex]
[tex]\[ E = \left( \frac{1200}{31} \right) + \left( \frac{6000}{31} \right) + \left( \frac{1200}{31} \right) + \left( 0 \right) + \left( \frac{1000}{31} \right) + \left( \frac{20000}{31} \right) \][/tex]
[tex]\[ E = \frac{1200 + 6000 + 1200 + 0 + 1000 + 20000}{31} \][/tex]
[tex]\[ E = \frac{29200}{31} \][/tex]
[tex]\[ E \approx 948.3870967741935 \][/tex]
Therefore, the expected value of winning on the new "Wheel of Fortune" is approximately \$948.39.
Step 1: Identify the different amounts of money on the wheel and their respective numbers of slots.
There are:
- \[tex]$200 appears in 6 slots - \$[/tex]400 appears in 15 slots
- \[tex]$600 appears in 2 slots - \$[/tex]0 appears in 6 slots
- \[tex]$1000 appears in 1 slot - \$[/tex]20,000 (the car) appears in 1 slot
Step 2: Calculate the total number of slots on the wheel.
Total slots = [tex]\(6 + 15 + 2 + 6 + 1 + 1 = 31\)[/tex]
Step 3: Determine the probability of landing on each type of slot.
For each amount, the probability is calculated by dividing the number of specific slots by the total number of slots:
- Probability of \[tex]$200: \(\frac{6}{31}\) - Probability of \$[/tex]400: [tex]\(\frac{15}{31}\)[/tex]
- Probability of \[tex]$600: \(\frac{2}{31}\) - Probability of \$[/tex]0: [tex]\(\frac{6}{31}\)[/tex]
- Probability of \[tex]$1000: \(\frac{1}{31}\) - Probability of \$[/tex]20,000: [tex]\(\frac{1}{31}\)[/tex]
Step 4: Calculate the expected value.
The expected value [tex]\(E\)[/tex] is found by multiplying each monetary amount by its respective probability and summing the results:
[tex]\[ E = \left( 200 \times \frac{6}{31} \right) + \left( 400 \times \frac{15}{31} \right) + \left( 600 \times \frac{2}{31} \right) + \left( 0 \times \frac{6}{31} \right) + \left( 1000 \times \frac{1}{31} \right) + \left( 20000 \times \frac{1}{31} \right) \][/tex]
[tex]\[ E = \left( \frac{1200}{31} \right) + \left( \frac{6000}{31} \right) + \left( \frac{1200}{31} \right) + \left( 0 \right) + \left( \frac{1000}{31} \right) + \left( \frac{20000}{31} \right) \][/tex]
[tex]\[ E = \frac{1200 + 6000 + 1200 + 0 + 1000 + 20000}{31} \][/tex]
[tex]\[ E = \frac{29200}{31} \][/tex]
[tex]\[ E \approx 948.3870967741935 \][/tex]
Therefore, the expected value of winning on the new "Wheel of Fortune" is approximately \$948.39.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.