Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the expected value of winning on the new "Wheel of Fortune," we can follow these steps:
Step 1: Identify the different amounts of money on the wheel and their respective numbers of slots.
There are:
- \[tex]$200 appears in 6 slots - \$[/tex]400 appears in 15 slots
- \[tex]$600 appears in 2 slots - \$[/tex]0 appears in 6 slots
- \[tex]$1000 appears in 1 slot - \$[/tex]20,000 (the car) appears in 1 slot
Step 2: Calculate the total number of slots on the wheel.
Total slots = [tex]\(6 + 15 + 2 + 6 + 1 + 1 = 31\)[/tex]
Step 3: Determine the probability of landing on each type of slot.
For each amount, the probability is calculated by dividing the number of specific slots by the total number of slots:
- Probability of \[tex]$200: \(\frac{6}{31}\) - Probability of \$[/tex]400: [tex]\(\frac{15}{31}\)[/tex]
- Probability of \[tex]$600: \(\frac{2}{31}\) - Probability of \$[/tex]0: [tex]\(\frac{6}{31}\)[/tex]
- Probability of \[tex]$1000: \(\frac{1}{31}\) - Probability of \$[/tex]20,000: [tex]\(\frac{1}{31}\)[/tex]
Step 4: Calculate the expected value.
The expected value [tex]\(E\)[/tex] is found by multiplying each monetary amount by its respective probability and summing the results:
[tex]\[ E = \left( 200 \times \frac{6}{31} \right) + \left( 400 \times \frac{15}{31} \right) + \left( 600 \times \frac{2}{31} \right) + \left( 0 \times \frac{6}{31} \right) + \left( 1000 \times \frac{1}{31} \right) + \left( 20000 \times \frac{1}{31} \right) \][/tex]
[tex]\[ E = \left( \frac{1200}{31} \right) + \left( \frac{6000}{31} \right) + \left( \frac{1200}{31} \right) + \left( 0 \right) + \left( \frac{1000}{31} \right) + \left( \frac{20000}{31} \right) \][/tex]
[tex]\[ E = \frac{1200 + 6000 + 1200 + 0 + 1000 + 20000}{31} \][/tex]
[tex]\[ E = \frac{29200}{31} \][/tex]
[tex]\[ E \approx 948.3870967741935 \][/tex]
Therefore, the expected value of winning on the new "Wheel of Fortune" is approximately \$948.39.
Step 1: Identify the different amounts of money on the wheel and their respective numbers of slots.
There are:
- \[tex]$200 appears in 6 slots - \$[/tex]400 appears in 15 slots
- \[tex]$600 appears in 2 slots - \$[/tex]0 appears in 6 slots
- \[tex]$1000 appears in 1 slot - \$[/tex]20,000 (the car) appears in 1 slot
Step 2: Calculate the total number of slots on the wheel.
Total slots = [tex]\(6 + 15 + 2 + 6 + 1 + 1 = 31\)[/tex]
Step 3: Determine the probability of landing on each type of slot.
For each amount, the probability is calculated by dividing the number of specific slots by the total number of slots:
- Probability of \[tex]$200: \(\frac{6}{31}\) - Probability of \$[/tex]400: [tex]\(\frac{15}{31}\)[/tex]
- Probability of \[tex]$600: \(\frac{2}{31}\) - Probability of \$[/tex]0: [tex]\(\frac{6}{31}\)[/tex]
- Probability of \[tex]$1000: \(\frac{1}{31}\) - Probability of \$[/tex]20,000: [tex]\(\frac{1}{31}\)[/tex]
Step 4: Calculate the expected value.
The expected value [tex]\(E\)[/tex] is found by multiplying each monetary amount by its respective probability and summing the results:
[tex]\[ E = \left( 200 \times \frac{6}{31} \right) + \left( 400 \times \frac{15}{31} \right) + \left( 600 \times \frac{2}{31} \right) + \left( 0 \times \frac{6}{31} \right) + \left( 1000 \times \frac{1}{31} \right) + \left( 20000 \times \frac{1}{31} \right) \][/tex]
[tex]\[ E = \left( \frac{1200}{31} \right) + \left( \frac{6000}{31} \right) + \left( \frac{1200}{31} \right) + \left( 0 \right) + \left( \frac{1000}{31} \right) + \left( \frac{20000}{31} \right) \][/tex]
[tex]\[ E = \frac{1200 + 6000 + 1200 + 0 + 1000 + 20000}{31} \][/tex]
[tex]\[ E = \frac{29200}{31} \][/tex]
[tex]\[ E \approx 948.3870967741935 \][/tex]
Therefore, the expected value of winning on the new "Wheel of Fortune" is approximately \$948.39.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.