Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's tackle each problem step-by-step.
### Problem 1: Convergence of the Series
Given the series:
[tex]\[ 1 - \frac{1}{\sqrt{3}} + \frac{1}{3} - \frac{1}{3\sqrt{3}} + \frac{1}{9} - \frac{1}{9\sqrt{3}} + \cdots \][/tex]
To determine whether this series converges or diverges, and if it converges, find the sum, we need to identify whether it represents a geometric series.
#### Step 1: Identify the Pattern
Observe the terms of the series and how they change. We can group the series in pairs of positive and negative terms as follows:
[tex]\[ \left(1 - \frac{1}{\sqrt{3}}\right) + \left(\frac{1}{3} - \frac{1}{3\sqrt{3}}\right) + \left(\frac{1}{9} - \frac{1}{9\sqrt{3}}\right) + \cdots \][/tex]
#### Step 2: Recognize the Series as Geometric
Each pair of terms can be expressed as:
[tex]\[ \left(\frac{1}{3^n} - \frac{1}{3^n \cdot \sqrt{3}}\right) \][/tex]
Factor out [tex]\( \frac{1}{3^n} \)[/tex] from each term:
[tex]\[ \left(\frac{1}{3^n} \times 1 - \frac{1}{3^n} \times \frac{1}{\sqrt{3}}\right) = \frac{1}{3^n} \left(1 - \frac{1}{\sqrt{3}}\right) \][/tex]
#### Step 3: Simplify the Series
Let:
[tex]\[ a = 1 - \frac{1}{\sqrt{3}} \][/tex]
Then our series becomes:
[tex]\[ a \left(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots\right) \][/tex]
#### Step 4: Sum the Geometric Series
This is a geometric series with the first term [tex]\( a \)[/tex] and common ratio [tex]\( r = \frac{1}{3} \)[/tex]. The sum [tex]\( S \)[/tex] of an infinite geometric series [tex]\( a + ar + ar^2 + ar^3 + \cdots \)[/tex] can be found using the formula:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
Here, [tex]\( a = 1 - \frac{1}{\sqrt{3}} \)[/tex] and [tex]\( r = \frac{1}{3} \)[/tex]. Plugging these in:
[tex]\[ S = \frac{1 - \frac{1}{\sqrt{3}}}{1 - \frac{1}{3}} = \frac{1 - \frac{1}{\sqrt{3}}}{\frac{2}{3}} = \frac{3}{2} \left(1 - \frac{1}{\sqrt{3}}\right) \][/tex]
Thus, the series converges and the sum is:
[tex]\[ \boxed{\frac{3}{2} \left(1 - \frac{1}{\sqrt{3}}\right)} \][/tex]
### Problem 2: Fractional Expansion of Repeating Decimal
Given the repeating decimal:
[tex]\[ 0.424242 \overline{42} \][/tex]
Let's convert this repeating decimal into a fraction.
#### Step 1: Express the Repeating Decimal as a Geometric Series
Notice that:
[tex]\[ 0.42424242\ldots = 0.42 + 0.0042 + 0.000042 + \cdots \][/tex]
We can write this as:
[tex]\[ 0.42 (1 + 0.01 + 0.0001 + \cdots) \][/tex]
Notice this forms a geometric series where each term is [tex]\( 0.01 \)[/tex] times the previous term.
#### Step 2: Write it as a Geometric Series
Let:
[tex]\[ a = 0.42 = \frac{42}{100} \][/tex]
[tex]\[ r = 0.01 = \frac{1}{100} \][/tex]
Thus:
[tex]\[ 0.424242\ldots = \frac{42}{100} \left(1 + \left(\frac{1}{100}\right) + \left(\frac{1}{100}\right)^2 + \cdots\right) \][/tex]
#### Step 3: Sum the Geometric Series
The sum [tex]\( S \)[/tex] of an infinite geometric series [tex]\( a + ar + ar^2 + ar^3 + \cdots \)[/tex] is:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
Here, [tex]\( a = \frac{42}{100} \)[/tex] and [tex]\( r = \frac{1}{100} \)[/tex]:
[tex]\[ S = \frac{\frac{42}{100}}{1 - \frac{1}{100}} = \frac{\frac{42}{100}}{\frac{99}{100}} = \frac{42}{99} \][/tex]
#### Step 4: Simplify the Fraction
Simplify [tex]\( \frac{42}{99} \)[/tex] by dividing the numerator and the denominator by their greatest common divisor, which is 3:
[tex]\[ \frac{42 \div 3}{99 \div 3} = \frac{14}{33} \][/tex]
Thus, the fractional expansion of the repeating decimal [tex]\( 0.424242 \overline{42} \)[/tex] is:
[tex]\[ \boxed{\frac{14}{33}} \][/tex]
### Problem 1: Convergence of the Series
Given the series:
[tex]\[ 1 - \frac{1}{\sqrt{3}} + \frac{1}{3} - \frac{1}{3\sqrt{3}} + \frac{1}{9} - \frac{1}{9\sqrt{3}} + \cdots \][/tex]
To determine whether this series converges or diverges, and if it converges, find the sum, we need to identify whether it represents a geometric series.
#### Step 1: Identify the Pattern
Observe the terms of the series and how they change. We can group the series in pairs of positive and negative terms as follows:
[tex]\[ \left(1 - \frac{1}{\sqrt{3}}\right) + \left(\frac{1}{3} - \frac{1}{3\sqrt{3}}\right) + \left(\frac{1}{9} - \frac{1}{9\sqrt{3}}\right) + \cdots \][/tex]
#### Step 2: Recognize the Series as Geometric
Each pair of terms can be expressed as:
[tex]\[ \left(\frac{1}{3^n} - \frac{1}{3^n \cdot \sqrt{3}}\right) \][/tex]
Factor out [tex]\( \frac{1}{3^n} \)[/tex] from each term:
[tex]\[ \left(\frac{1}{3^n} \times 1 - \frac{1}{3^n} \times \frac{1}{\sqrt{3}}\right) = \frac{1}{3^n} \left(1 - \frac{1}{\sqrt{3}}\right) \][/tex]
#### Step 3: Simplify the Series
Let:
[tex]\[ a = 1 - \frac{1}{\sqrt{3}} \][/tex]
Then our series becomes:
[tex]\[ a \left(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots\right) \][/tex]
#### Step 4: Sum the Geometric Series
This is a geometric series with the first term [tex]\( a \)[/tex] and common ratio [tex]\( r = \frac{1}{3} \)[/tex]. The sum [tex]\( S \)[/tex] of an infinite geometric series [tex]\( a + ar + ar^2 + ar^3 + \cdots \)[/tex] can be found using the formula:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
Here, [tex]\( a = 1 - \frac{1}{\sqrt{3}} \)[/tex] and [tex]\( r = \frac{1}{3} \)[/tex]. Plugging these in:
[tex]\[ S = \frac{1 - \frac{1}{\sqrt{3}}}{1 - \frac{1}{3}} = \frac{1 - \frac{1}{\sqrt{3}}}{\frac{2}{3}} = \frac{3}{2} \left(1 - \frac{1}{\sqrt{3}}\right) \][/tex]
Thus, the series converges and the sum is:
[tex]\[ \boxed{\frac{3}{2} \left(1 - \frac{1}{\sqrt{3}}\right)} \][/tex]
### Problem 2: Fractional Expansion of Repeating Decimal
Given the repeating decimal:
[tex]\[ 0.424242 \overline{42} \][/tex]
Let's convert this repeating decimal into a fraction.
#### Step 1: Express the Repeating Decimal as a Geometric Series
Notice that:
[tex]\[ 0.42424242\ldots = 0.42 + 0.0042 + 0.000042 + \cdots \][/tex]
We can write this as:
[tex]\[ 0.42 (1 + 0.01 + 0.0001 + \cdots) \][/tex]
Notice this forms a geometric series where each term is [tex]\( 0.01 \)[/tex] times the previous term.
#### Step 2: Write it as a Geometric Series
Let:
[tex]\[ a = 0.42 = \frac{42}{100} \][/tex]
[tex]\[ r = 0.01 = \frac{1}{100} \][/tex]
Thus:
[tex]\[ 0.424242\ldots = \frac{42}{100} \left(1 + \left(\frac{1}{100}\right) + \left(\frac{1}{100}\right)^2 + \cdots\right) \][/tex]
#### Step 3: Sum the Geometric Series
The sum [tex]\( S \)[/tex] of an infinite geometric series [tex]\( a + ar + ar^2 + ar^3 + \cdots \)[/tex] is:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
Here, [tex]\( a = \frac{42}{100} \)[/tex] and [tex]\( r = \frac{1}{100} \)[/tex]:
[tex]\[ S = \frac{\frac{42}{100}}{1 - \frac{1}{100}} = \frac{\frac{42}{100}}{\frac{99}{100}} = \frac{42}{99} \][/tex]
#### Step 4: Simplify the Fraction
Simplify [tex]\( \frac{42}{99} \)[/tex] by dividing the numerator and the denominator by their greatest common divisor, which is 3:
[tex]\[ \frac{42 \div 3}{99 \div 3} = \frac{14}{33} \][/tex]
Thus, the fractional expansion of the repeating decimal [tex]\( 0.424242 \overline{42} \)[/tex] is:
[tex]\[ \boxed{\frac{14}{33}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.