Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the approximate time of death, we'll use Newton's Law of Cooling. Given the constants and final body temperature, we can rearrange the formula to solve for the time [tex]\( t \)[/tex] since death. Here are the steps we follow:
1. Understand Newton's Law of Cooling:
[tex]\[ T(t) = T_A + (T_0 - T_A) e^{-kt} \][/tex]
Where:
- [tex]\( T(t) \)[/tex] is the temperature of the body at time [tex]\( t \)[/tex]
- [tex]\( T_A \)[/tex] is the ambient temperature (55°F)
- [tex]\( T_0 \)[/tex] is the initial body temperature (98.6°F)
- [tex]\( k \)[/tex] is the cooling constant (0.1947)
- [tex]\( t \)[/tex] is the time since death in hours.
2. Given values:
[tex]\[ T(t) = 66^\circ F \quad (body \ temperature \ found) \][/tex]
[tex]\[ T_A = 55^\circ F \quad (ambient \ temperature) \][/tex]
[tex]\[ T_0 = 98.6^\circ F \quad (initial \ body \ temperature) \][/tex]
[tex]\[ k = 0.1947 \][/tex]
3. Formulate the equation:
Plug the given values into the Newton's Law of Cooling formula:
[tex]\[ 66 = 55 + (98.6 - 55) e^{-0.1947t} \][/tex]
4. Isolate the exponential term:
[tex]\[ 66 - 55 = (98.6 - 55) e^{-0.1947t} \][/tex]
[tex]\[ 11 = 43.6 e^{-0.1947t} \][/tex]
5. Solve for the exponential term:
[tex]\[ \frac{11}{43.6} = e^{-0.1947t} \][/tex]
[tex]\[ 0.2522935779816514 = e^{-0.1947t} \][/tex]
6. Use the natural logarithm to solve for [tex]\( t \)[/tex]:
Take the natural logarithm of both sides:
[tex]\[ \ln(0.2522935779816514) = -0.1947t \][/tex]
[tex]\[ -1.375911 \approx -0.1947t \][/tex]
7. Solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{-1.375911}{-0.1947} \approx 7.073 \text{ hours} \][/tex]
8. Determine the time of death:
Since the body was found at 12 a.m. midnight, we conclude:
[tex]\[ \text{Time since death} = 7.073 \text{ hours} \][/tex]
To find the approximate time of death, subtract this from 12 a.m.:
[tex]\[ \text{Time of death} = 12 \text{ a.m.} - 7.073 \text{ hours} \approx 5 \text{ p.m.} \][/tex]
Therefore, considering all the calculations:
The approximate time of death was around 5 p.m. Hence, the correct answer is:
C. 5 p.m.
1. Understand Newton's Law of Cooling:
[tex]\[ T(t) = T_A + (T_0 - T_A) e^{-kt} \][/tex]
Where:
- [tex]\( T(t) \)[/tex] is the temperature of the body at time [tex]\( t \)[/tex]
- [tex]\( T_A \)[/tex] is the ambient temperature (55°F)
- [tex]\( T_0 \)[/tex] is the initial body temperature (98.6°F)
- [tex]\( k \)[/tex] is the cooling constant (0.1947)
- [tex]\( t \)[/tex] is the time since death in hours.
2. Given values:
[tex]\[ T(t) = 66^\circ F \quad (body \ temperature \ found) \][/tex]
[tex]\[ T_A = 55^\circ F \quad (ambient \ temperature) \][/tex]
[tex]\[ T_0 = 98.6^\circ F \quad (initial \ body \ temperature) \][/tex]
[tex]\[ k = 0.1947 \][/tex]
3. Formulate the equation:
Plug the given values into the Newton's Law of Cooling formula:
[tex]\[ 66 = 55 + (98.6 - 55) e^{-0.1947t} \][/tex]
4. Isolate the exponential term:
[tex]\[ 66 - 55 = (98.6 - 55) e^{-0.1947t} \][/tex]
[tex]\[ 11 = 43.6 e^{-0.1947t} \][/tex]
5. Solve for the exponential term:
[tex]\[ \frac{11}{43.6} = e^{-0.1947t} \][/tex]
[tex]\[ 0.2522935779816514 = e^{-0.1947t} \][/tex]
6. Use the natural logarithm to solve for [tex]\( t \)[/tex]:
Take the natural logarithm of both sides:
[tex]\[ \ln(0.2522935779816514) = -0.1947t \][/tex]
[tex]\[ -1.375911 \approx -0.1947t \][/tex]
7. Solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{-1.375911}{-0.1947} \approx 7.073 \text{ hours} \][/tex]
8. Determine the time of death:
Since the body was found at 12 a.m. midnight, we conclude:
[tex]\[ \text{Time since death} = 7.073 \text{ hours} \][/tex]
To find the approximate time of death, subtract this from 12 a.m.:
[tex]\[ \text{Time of death} = 12 \text{ a.m.} - 7.073 \text{ hours} \approx 5 \text{ p.m.} \][/tex]
Therefore, considering all the calculations:
The approximate time of death was around 5 p.m. Hence, the correct answer is:
C. 5 p.m.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.