Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve the problem by factoring the polynomial [tex]\(3x^2 + 20x - 32\)[/tex].
To factor this polynomial, we look for two binomials that multiply together to give us the original quadratic polynomial. Let's consider the polynomial:
[tex]\[ 3x^2 + 20x - 32 \][/tex]
Step-by-step solution:
1. Identify the coefficients:
- The coefficient of [tex]\(x^2\)[/tex] (the quadratic term) is [tex]\(a = 3\)[/tex].
- The coefficient of [tex]\(x\)[/tex] (the linear term) is [tex]\(b = 20\)[/tex].
- The constant term is [tex]\(c = -32\)[/tex].
2. Factor the polynomial:
We need to find two numbers whose product is [tex]\(a \cdot c = 3 \cdot (-32) = -96\)[/tex] and whose sum is [tex]\(b = 20\)[/tex].
3. Find the roots:
The two numbers that satisfy these conditions are [tex]\(24\)[/tex] and [tex]\(-4\)[/tex] because:
- [tex]\(24 \times (-4) = -96\)[/tex]
- [tex]\(24 + (-4) = 20\)[/tex]
4. Rewrite the middle term using these factors:
Rewrite [tex]\(20x\)[/tex] as [tex]\(24x - 4x\)[/tex]:
[tex]\[ 3x^2 + 24x - 4x - 32 \][/tex]
5. Group the terms:
Group the first two terms and the last two terms:
[tex]\[ (3x^2 + 24x) + (-4x - 32) \][/tex]
6. Factor out the greatest common factor (GCF) from each group:
[tex]\[ 3x(x + 8) - 4(x + 8) \][/tex]
7. Factor out the common binomial factor [tex]\((x + 8)\)[/tex]:
[tex]\[ (x + 8)(3x - 4) \][/tex]
Therefore, the factored form of the polynomial [tex]\(3x^2 + 20x - 32\)[/tex] is:
[tex]\[ (x + 8)(3x - 4) \][/tex]
To factor this polynomial, we look for two binomials that multiply together to give us the original quadratic polynomial. Let's consider the polynomial:
[tex]\[ 3x^2 + 20x - 32 \][/tex]
Step-by-step solution:
1. Identify the coefficients:
- The coefficient of [tex]\(x^2\)[/tex] (the quadratic term) is [tex]\(a = 3\)[/tex].
- The coefficient of [tex]\(x\)[/tex] (the linear term) is [tex]\(b = 20\)[/tex].
- The constant term is [tex]\(c = -32\)[/tex].
2. Factor the polynomial:
We need to find two numbers whose product is [tex]\(a \cdot c = 3 \cdot (-32) = -96\)[/tex] and whose sum is [tex]\(b = 20\)[/tex].
3. Find the roots:
The two numbers that satisfy these conditions are [tex]\(24\)[/tex] and [tex]\(-4\)[/tex] because:
- [tex]\(24 \times (-4) = -96\)[/tex]
- [tex]\(24 + (-4) = 20\)[/tex]
4. Rewrite the middle term using these factors:
Rewrite [tex]\(20x\)[/tex] as [tex]\(24x - 4x\)[/tex]:
[tex]\[ 3x^2 + 24x - 4x - 32 \][/tex]
5. Group the terms:
Group the first two terms and the last two terms:
[tex]\[ (3x^2 + 24x) + (-4x - 32) \][/tex]
6. Factor out the greatest common factor (GCF) from each group:
[tex]\[ 3x(x + 8) - 4(x + 8) \][/tex]
7. Factor out the common binomial factor [tex]\((x + 8)\)[/tex]:
[tex]\[ (x + 8)(3x - 4) \][/tex]
Therefore, the factored form of the polynomial [tex]\(3x^2 + 20x - 32\)[/tex] is:
[tex]\[ (x + 8)(3x - 4) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.