Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's factor the given polynomial step-by-step.
The given polynomial is:
[tex]\[ 4u^3 + 500 \][/tex]
To factor this polynomial completely, let's rewrite it in terms of simpler expressions that can be factored step-by-step.
1. Identify a common factor, if any:
In this case, we recognize that each term is divisible by 4:
[tex]\[ 4u^3 + 500 = 4(u^3 + 125) \][/tex]
2. Factor the remaining polynomial inside the parentheses:
Notice that [tex]\( u^3 + 125 \)[/tex] is a sum of cubes. The sum of cubes can be factored using the formula:
[tex]\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \][/tex]
Here, [tex]\( u^3 \)[/tex] is [tex]\( u^3 \)[/tex] and [tex]\( 125 \)[/tex] is [tex]\( 5^3 \)[/tex]. So, the sum of cubes formula can be applied where [tex]\( a = u \)[/tex] and [tex]\( b = 5 \)[/tex]:
[tex]\[ u^3 + 5^3 = (u + 5)(u^2 - 5u + 25) \][/tex]
3. Substitute back into the original expression:
Substitute the factored form back into the equation:
[tex]\[ 4(u^3 + 125) = 4(u + 5)(u^2 - 5u + 25) \][/tex]
So, the completely factored form of the polynomial [tex]\( 4u^3 + 500 \)[/tex] is:
[tex]\[ 4(u + 5)(u^2 - 5u + 25) \][/tex]
Therefore, the correct answer is:
[tex]\[ 4(u+5)\left(u^2-5u+25\right) \][/tex]
The given polynomial is:
[tex]\[ 4u^3 + 500 \][/tex]
To factor this polynomial completely, let's rewrite it in terms of simpler expressions that can be factored step-by-step.
1. Identify a common factor, if any:
In this case, we recognize that each term is divisible by 4:
[tex]\[ 4u^3 + 500 = 4(u^3 + 125) \][/tex]
2. Factor the remaining polynomial inside the parentheses:
Notice that [tex]\( u^3 + 125 \)[/tex] is a sum of cubes. The sum of cubes can be factored using the formula:
[tex]\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \][/tex]
Here, [tex]\( u^3 \)[/tex] is [tex]\( u^3 \)[/tex] and [tex]\( 125 \)[/tex] is [tex]\( 5^3 \)[/tex]. So, the sum of cubes formula can be applied where [tex]\( a = u \)[/tex] and [tex]\( b = 5 \)[/tex]:
[tex]\[ u^3 + 5^3 = (u + 5)(u^2 - 5u + 25) \][/tex]
3. Substitute back into the original expression:
Substitute the factored form back into the equation:
[tex]\[ 4(u^3 + 125) = 4(u + 5)(u^2 - 5u + 25) \][/tex]
So, the completely factored form of the polynomial [tex]\( 4u^3 + 500 \)[/tex] is:
[tex]\[ 4(u + 5)(u^2 - 5u + 25) \][/tex]
Therefore, the correct answer is:
[tex]\[ 4(u+5)\left(u^2-5u+25\right) \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.