At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To calculate the mass of ammonium sulfide [tex]\(\left( NH_4 \right)_2 S\)[/tex] in 3.00 L of a 0.0200 M solution, we can follow these steps:
1. Determine the number of moles of [tex]\(\left( NH_4 \right)_2 S\)[/tex]:
- Molarity ([tex]\(M\)[/tex]) is defined as the number of moles of solute per liter of solution.
- The given molarity of the solution is 0.0200 M, which means there are 0.0200 moles of [tex]\(\left( NH_4 \right)_2 S\)[/tex] per liter of solution.
- Volume of the solution is 3.00 L.
- To find the total number of moles, multiply the molarity by the volume of the solution:
[tex]\[ \text{moles of} \ \left( NH_4 \right)_2 S = 0.0200 \ \text{mol/L} \times 3.00 \ \text{L} = 0.0600 \ \text{mol} \][/tex]
2. Calculate the molar mass of [tex]\(\left( NH_4 \right)_2 S\)[/tex]:
- The molar mass is obtained by adding the atomic masses of all the atoms in the molecular formula.
- For ammonium sulfide, [tex]\(\left( NH_4 \right)_2 S\)[/tex]:
- Nitrogen [tex]\((N)\)[/tex] has an atomic mass of approximately [tex]\(14.01 \ \text{g/mol}\)[/tex].
- Hydrogen [tex]\((H)\)[/tex] has an atomic mass of approximately [tex]\(1.008 \ \text{g/mol}\)[/tex].
- Sulfur [tex]\((S)\)[/tex] has an atomic mass of approximately [tex]\(32.07 \ \text{g/mol}\)[/tex].
- The formula [tex]\(\left( NH_4 \right)_2 S\)[/tex] consists of:
- 2 nitrogen atoms: [tex]\(2 \times 14.01 \ \text{g/mol} = 28.02 \ \text{g/mol}\)[/tex]
- 8 hydrogen atoms: [tex]\(8 \times 1.008 \ \text{g/mol} = 8.064 \ \text{g/mol}\)[/tex]
- 1 sulfur atom: [tex]\(1 \times 32.07 \ \text{g/mol} = 32.07 \ \text{g/mol}\)[/tex]
- Adding these together:
[tex]\[ \text{Molar mass of} \ \left( NH_4 \right)_2 S = 28.02 \ \text{g/mol} + 8.064 \ \text{g/mol} + 32.07 \ \text{g/mol} = 68.154 \ \text{g/mol} \][/tex]
3. Calculate the mass of [tex]\(\left( NH_4 \right)_2 S\)[/tex]:
- The mass of a substance can be calculated by multiplying the number of moles by the molar mass.
- Using the number of moles (0.0600 mol) and the molar mass (68.154 g/mol), we get:
[tex]\[ \text{mass of} \ \left( NH_4 \right)_2 S = 0.0600 \ \text{mol} \times 68.154 \ \text{g/mol} = 4.08924 \ \text{g} \][/tex]
Hence, the mass of ammonium sulfide in 3.00 L of a 0.0200 M solution is approximately [tex]\(4.089 \ \text{g}\)[/tex].
1. Determine the number of moles of [tex]\(\left( NH_4 \right)_2 S\)[/tex]:
- Molarity ([tex]\(M\)[/tex]) is defined as the number of moles of solute per liter of solution.
- The given molarity of the solution is 0.0200 M, which means there are 0.0200 moles of [tex]\(\left( NH_4 \right)_2 S\)[/tex] per liter of solution.
- Volume of the solution is 3.00 L.
- To find the total number of moles, multiply the molarity by the volume of the solution:
[tex]\[ \text{moles of} \ \left( NH_4 \right)_2 S = 0.0200 \ \text{mol/L} \times 3.00 \ \text{L} = 0.0600 \ \text{mol} \][/tex]
2. Calculate the molar mass of [tex]\(\left( NH_4 \right)_2 S\)[/tex]:
- The molar mass is obtained by adding the atomic masses of all the atoms in the molecular formula.
- For ammonium sulfide, [tex]\(\left( NH_4 \right)_2 S\)[/tex]:
- Nitrogen [tex]\((N)\)[/tex] has an atomic mass of approximately [tex]\(14.01 \ \text{g/mol}\)[/tex].
- Hydrogen [tex]\((H)\)[/tex] has an atomic mass of approximately [tex]\(1.008 \ \text{g/mol}\)[/tex].
- Sulfur [tex]\((S)\)[/tex] has an atomic mass of approximately [tex]\(32.07 \ \text{g/mol}\)[/tex].
- The formula [tex]\(\left( NH_4 \right)_2 S\)[/tex] consists of:
- 2 nitrogen atoms: [tex]\(2 \times 14.01 \ \text{g/mol} = 28.02 \ \text{g/mol}\)[/tex]
- 8 hydrogen atoms: [tex]\(8 \times 1.008 \ \text{g/mol} = 8.064 \ \text{g/mol}\)[/tex]
- 1 sulfur atom: [tex]\(1 \times 32.07 \ \text{g/mol} = 32.07 \ \text{g/mol}\)[/tex]
- Adding these together:
[tex]\[ \text{Molar mass of} \ \left( NH_4 \right)_2 S = 28.02 \ \text{g/mol} + 8.064 \ \text{g/mol} + 32.07 \ \text{g/mol} = 68.154 \ \text{g/mol} \][/tex]
3. Calculate the mass of [tex]\(\left( NH_4 \right)_2 S\)[/tex]:
- The mass of a substance can be calculated by multiplying the number of moles by the molar mass.
- Using the number of moles (0.0600 mol) and the molar mass (68.154 g/mol), we get:
[tex]\[ \text{mass of} \ \left( NH_4 \right)_2 S = 0.0600 \ \text{mol} \times 68.154 \ \text{g/mol} = 4.08924 \ \text{g} \][/tex]
Hence, the mass of ammonium sulfide in 3.00 L of a 0.0200 M solution is approximately [tex]\(4.089 \ \text{g}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.