Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's approach this problem step-by-step and address each part of the question in detail.
### Polynomial Expressions and Division
Step 1: Define Two Polynomial Expressions
Consider the following two polynomial expressions:
- Numerator: [tex]\( x^2 - 4x + 4 \)[/tex]
- Denominator: [tex]\( x - 2 \)[/tex]
We will perform polynomial division to find the quotient and remainder.
Step 2: Perform Polynomial Division
To divide [tex]\( x^2 - 4x + 4 \)[/tex] by [tex]\( x - 2 \)[/tex]:
1. Divide the leading term of the numerator by the leading term of the denominator:
[tex]\[ \frac{x^2}{x} = x \][/tex]
2. Multiply the entire denominator by this quotient term and subtract from the numerator:
[tex]\[ x^2 - 4x + 4 - (x \cdot (x - 2)) = x^2 - 4x + 4 - (x^2 - 2x) = -2x + 4 \][/tex]
3. Repeat the process with the new polynomial [tex]\(-2x + 4\)[/tex]:
[tex]\[ \frac{-2x}{x} = -2 \][/tex]
4. Multiply the entire denominator by the new quotient term and subtract:
[tex]\[ -2x + 4 - (-2 \cdot (x - 2)) = -2x + 4 - (-2x + 4) = 0 \][/tex]
Thus, the quotient is [tex]\( x - 2 \)[/tex] and the remainder is [tex]\( 0 \)[/tex].
### Check for Closure Under Division
A set is closed under an operation if performing that operation on elements within the set always results in another element within the set. In our case:
- The quotient [tex]\( x - 2 \)[/tex] is a polynomial.
- The remainder [tex]\( 0 \)[/tex] is also a polynomial.
However, polynomial division does not always produce a polynomial quotient unless the remainder is zero.
Conclusion: Polynomials are not closed under division because the quotient of two polynomials is not necessarily a polynomial (it can be a rational function when the remainder is not zero).
### Comparing Addition, Subtraction, and Multiplication with Division
Addition:
- Adding two polynomials [tex]\( (a(x) + b(x)) \)[/tex] results in another polynomial.
- Example: [tex]\( (x^2 + 3x + 2) + (x - 1) = x^2 + 4x + 1 \)[/tex]
Subtraction:
- Subtracting one polynomial from another [tex]\( (a(x) - b(x)) \)[/tex] also results in another polynomial.
- Example: [tex]\( (x^2 + 3x + 2) - (x - 1) = x^2 + 2x + 3 \)[/tex]
Multiplication:
- Multiplying two polynomials [tex]\( (a(x) \cdot b(x)) \)[/tex] results in another polynomial.
- Example: [tex]\( (x^2 + 3x + 2) \cdot (x - 1) = x^3 + 2x^2 - x - 2 \)[/tex]
Division:
- Division of polynomials, as previously mentioned, can result in a rational function if the remainder is not zero.
- Example: [tex]\( \frac{x^2 - 2}{x - 2} \neq \text{Polynomial} \)[/tex] (since it results in [tex]\( x + 2 + \frac{2}{x-2} \)[/tex]).
### Summary
- Addition, Subtraction, and Multiplication: These operations on polynomials always result in another polynomial. Hence, polynomials are closed under these operations.
- Division: This operation can yield rational functions, not necessarily polynomials. Therefore, polynomials are not closed under division.
I hope this detailed explanation helps in understanding the nature of polynomial operations and their closures!
### Polynomial Expressions and Division
Step 1: Define Two Polynomial Expressions
Consider the following two polynomial expressions:
- Numerator: [tex]\( x^2 - 4x + 4 \)[/tex]
- Denominator: [tex]\( x - 2 \)[/tex]
We will perform polynomial division to find the quotient and remainder.
Step 2: Perform Polynomial Division
To divide [tex]\( x^2 - 4x + 4 \)[/tex] by [tex]\( x - 2 \)[/tex]:
1. Divide the leading term of the numerator by the leading term of the denominator:
[tex]\[ \frac{x^2}{x} = x \][/tex]
2. Multiply the entire denominator by this quotient term and subtract from the numerator:
[tex]\[ x^2 - 4x + 4 - (x \cdot (x - 2)) = x^2 - 4x + 4 - (x^2 - 2x) = -2x + 4 \][/tex]
3. Repeat the process with the new polynomial [tex]\(-2x + 4\)[/tex]:
[tex]\[ \frac{-2x}{x} = -2 \][/tex]
4. Multiply the entire denominator by the new quotient term and subtract:
[tex]\[ -2x + 4 - (-2 \cdot (x - 2)) = -2x + 4 - (-2x + 4) = 0 \][/tex]
Thus, the quotient is [tex]\( x - 2 \)[/tex] and the remainder is [tex]\( 0 \)[/tex].
### Check for Closure Under Division
A set is closed under an operation if performing that operation on elements within the set always results in another element within the set. In our case:
- The quotient [tex]\( x - 2 \)[/tex] is a polynomial.
- The remainder [tex]\( 0 \)[/tex] is also a polynomial.
However, polynomial division does not always produce a polynomial quotient unless the remainder is zero.
Conclusion: Polynomials are not closed under division because the quotient of two polynomials is not necessarily a polynomial (it can be a rational function when the remainder is not zero).
### Comparing Addition, Subtraction, and Multiplication with Division
Addition:
- Adding two polynomials [tex]\( (a(x) + b(x)) \)[/tex] results in another polynomial.
- Example: [tex]\( (x^2 + 3x + 2) + (x - 1) = x^2 + 4x + 1 \)[/tex]
Subtraction:
- Subtracting one polynomial from another [tex]\( (a(x) - b(x)) \)[/tex] also results in another polynomial.
- Example: [tex]\( (x^2 + 3x + 2) - (x - 1) = x^2 + 2x + 3 \)[/tex]
Multiplication:
- Multiplying two polynomials [tex]\( (a(x) \cdot b(x)) \)[/tex] results in another polynomial.
- Example: [tex]\( (x^2 + 3x + 2) \cdot (x - 1) = x^3 + 2x^2 - x - 2 \)[/tex]
Division:
- Division of polynomials, as previously mentioned, can result in a rational function if the remainder is not zero.
- Example: [tex]\( \frac{x^2 - 2}{x - 2} \neq \text{Polynomial} \)[/tex] (since it results in [tex]\( x + 2 + \frac{2}{x-2} \)[/tex]).
### Summary
- Addition, Subtraction, and Multiplication: These operations on polynomials always result in another polynomial. Hence, polynomials are closed under these operations.
- Division: This operation can yield rational functions, not necessarily polynomials. Therefore, polynomials are not closed under division.
I hope this detailed explanation helps in understanding the nature of polynomial operations and their closures!
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.