Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Which of the following is the inverse of [tex]$y=12^x$[/tex]?

A. [tex]$y=\log _{\frac{1}{12}} x$[/tex]
B. [tex][tex]$y=\log _{12} \frac{1}{x}$[/tex][/tex]
C. [tex]$y=\log _x 12$[/tex]
D. [tex]$y=\log _{12} x$[/tex]


Sagot :

To find the inverse of the function [tex]\( y = 12^x \)[/tex], follow these steps:

1. Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] and [tex]\( x \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ x = 12^y \][/tex]

2. Solve for [tex]\( y \)[/tex]:
- To isolate [tex]\( y \)[/tex], take the logarithm base 12 of both sides:
[tex]\[ \log_{12}(x) = y \][/tex]

3. Rewrite the equation:
- So, the inverse function is:
[tex]\[ y = \log_{12}(x) \][/tex]

After following this process, we see that the correct inverse of the function [tex]\( y = 12^x \)[/tex] is:
[tex]\[ y = \log_{12} x \][/tex]

Thus, among the given choices, the correct answer is:
\[
y = \log_{12} x
\
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.