Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Two particles are separated by 0.38 m and have charges of [tex]$1.25 \times 10^{-9} C$[/tex] and [tex]$1.92 \times 10^{-9} C$[/tex]. Use Coulomb's law to predict the force between the particles if the distance is doubled. The equation for Coulomb's law is [tex]F_e = \frac{k q_1 q_2}{r^2}[/tex], and the constant [tex]k[/tex] equals [tex]9.00 \times 10^9 N \cdot m^2 / C^2[/tex].

A. [tex]-3.74 \times 10^{-8} N[/tex]
B. [tex]1.50 \times 10^{-7} N[/tex]
C. [tex]-1.50 \times 10^{-7} N[/tex]
D. [tex]3.74 \times 10^{-8} N[/tex]


Sagot :

To determine the force between two charged particles at an initial distance and then when the distance is doubled, we will apply Coulomb's law. The formula for the electrostatic force between two charges is given by:

[tex]\[ F_e = \frac{k \cdot q_1 \cdot q_2}{r^2} \][/tex]

where:
- [tex]\( F_e \)[/tex] is the electrostatic force,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the charges of the particles,
- [tex]\( r \)[/tex] is the separation distance between the charges.

Given data:
- Charge [tex]\( q_1 = 1.25 \times 10^{-9} \, \text{C} \)[/tex]
- Charge [tex]\( q_2 = 1.92 \times 10^{-9} \, \text{C} \)[/tex]
- Initial separation [tex]\( r = 0.38 \, \text{m} \)[/tex]

1. Calculating the force at the initial distance [tex]\( r = 0.38 \, \text{m} \)[/tex]:

[tex]\[ F_{\text{initial}} = \frac{9.00 \times 10^9 \cdot 1.25 \times 10^{-9} \cdot 1.92 \times 10^{-9}}{(0.38)^2} \][/tex]

The calculated result is:

[tex]\[ F_{\text{initial}} \approx 1.50 \times 10^{-7} \, \text{N} \][/tex]

2. Doubling the distance [tex]\( r_{\text{new}} = 2 \times 0.38 \, \text{m} = 0.76 \, \text{m} \)[/tex]:

[tex]\[ F_{\text{new}} = \frac{9.00 \times 10^9 \cdot 1.25 \times 10^{-9} \cdot 1.92 \times 10^{-9}}{(0.76)^2} \][/tex]

The calculated result is:

[tex]\[ F_{\text{new}} \approx 3.74 \times 10^{-8} \, \text{N} \][/tex]

So, the initial electrostatic force is [tex]\( 1.50 \times 10^{-7} \, \text{N} \)[/tex], and the new force when the distance is doubled is [tex]\( 3.74 \times 10^{-8} \, \text{N} \)[/tex].

Among the given choices:

- A. [tex]\( -3.74 \times 10^{-8} \, \text{N} \)[/tex]
- B. [tex]\( 1.50 \times 10^{-7} \, \text{N} \)[/tex]
- C. [tex]\( -1.50 \times 10^{-7} \, \text{N} \)[/tex]
- D. [tex]\( 3.74 \times 10^{-8} \, \text{N} \)[/tex]

The correct numerical value for the new force is [tex]\( 3.74 \times 10^{-8} \, \text{N} \)[/tex].

Thus, the correct answer is:

D. [tex]\( 3.74 \times 10^{-8} \, \text{N} \)[/tex]