Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve each inequality step by step and determine which one has no solution.
### Inequality 1: [tex]\( 6(x+2) > x-3 \)[/tex]
1. Distribute the 6 on the left-hand side:
[tex]\[ 6x + 12 > x - 3 \][/tex]
2. Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 5x + 12 > -3 \][/tex]
3. Subtract 12 from both sides:
[tex]\[ 5x > -15 \][/tex]
4. Divide both sides by 5:
[tex]\[ x > -3 \][/tex]
The solution to the first inequality is [tex]\( x > -3 \)[/tex].
### Inequality 2: [tex]\( 3 + 4x \leq 2(1 + 2x) \)[/tex]
1. Distribute the 2 on the right-hand side:
[tex]\[ 3 + 4x \leq 2 + 4x \][/tex]
2. Subtract [tex]\(4x\)[/tex] from both sides:
[tex]\[ 3 \leq 2 \][/tex]
This inequality simplifies to [tex]\( 3 \leq 2 \)[/tex], which is a contradiction. Therefore, there is no solution for this inequality.
### Inequality 3: [tex]\( -2(x + 6) < x - 20 \)[/tex]
1. Distribute the [tex]\(-2\)[/tex] on the left-hand side:
[tex]\[ -2x - 12 < x - 20 \][/tex]
2. Add [tex]\(2x\)[/tex] to both sides:
[tex]\[ -12 < 3x - 20 \][/tex]
3. Add 20 to both sides:
[tex]\[ 8 < 3x \][/tex]
4. Divide both sides by 3:
[tex]\[ \frac{8}{3} < x \][/tex]
The solution to the third inequality is [tex]\( x > \frac{8}{3} \)[/tex].
### Inequality 4: [tex]\( x - 9 < 3(x - 3) \)[/tex]
1. Distribute the 3 on the right-hand side:
[tex]\[ x - 9 < 3x - 9 \][/tex]
2. Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ -9 < 2x - 9 \][/tex]
3. Add 9 to both sides:
[tex]\[ 0 < 2x \][/tex]
4. Divide both sides by 2:
[tex]\[ 0 < x \][/tex]
The solution to the fourth inequality is [tex]\( x > 0 \)[/tex].
### Conclusion
Among the four inequalities, the second inequality [tex]\( 3 + 4x \leq 2(1 + 2x) \)[/tex] has no solution, as it simplifies to a contradiction [tex]\( 3 \leq 2 \)[/tex].
### Inequality 1: [tex]\( 6(x+2) > x-3 \)[/tex]
1. Distribute the 6 on the left-hand side:
[tex]\[ 6x + 12 > x - 3 \][/tex]
2. Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 5x + 12 > -3 \][/tex]
3. Subtract 12 from both sides:
[tex]\[ 5x > -15 \][/tex]
4. Divide both sides by 5:
[tex]\[ x > -3 \][/tex]
The solution to the first inequality is [tex]\( x > -3 \)[/tex].
### Inequality 2: [tex]\( 3 + 4x \leq 2(1 + 2x) \)[/tex]
1. Distribute the 2 on the right-hand side:
[tex]\[ 3 + 4x \leq 2 + 4x \][/tex]
2. Subtract [tex]\(4x\)[/tex] from both sides:
[tex]\[ 3 \leq 2 \][/tex]
This inequality simplifies to [tex]\( 3 \leq 2 \)[/tex], which is a contradiction. Therefore, there is no solution for this inequality.
### Inequality 3: [tex]\( -2(x + 6) < x - 20 \)[/tex]
1. Distribute the [tex]\(-2\)[/tex] on the left-hand side:
[tex]\[ -2x - 12 < x - 20 \][/tex]
2. Add [tex]\(2x\)[/tex] to both sides:
[tex]\[ -12 < 3x - 20 \][/tex]
3. Add 20 to both sides:
[tex]\[ 8 < 3x \][/tex]
4. Divide both sides by 3:
[tex]\[ \frac{8}{3} < x \][/tex]
The solution to the third inequality is [tex]\( x > \frac{8}{3} \)[/tex].
### Inequality 4: [tex]\( x - 9 < 3(x - 3) \)[/tex]
1. Distribute the 3 on the right-hand side:
[tex]\[ x - 9 < 3x - 9 \][/tex]
2. Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ -9 < 2x - 9 \][/tex]
3. Add 9 to both sides:
[tex]\[ 0 < 2x \][/tex]
4. Divide both sides by 2:
[tex]\[ 0 < x \][/tex]
The solution to the fourth inequality is [tex]\( x > 0 \)[/tex].
### Conclusion
Among the four inequalities, the second inequality [tex]\( 3 + 4x \leq 2(1 + 2x) \)[/tex] has no solution, as it simplifies to a contradiction [tex]\( 3 \leq 2 \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.