Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, let's analyze the function transformation given:
[tex]\[ g(x) = f\left(\frac{1}{3} x\right) \][/tex]
This type of transformation involves the horizontal scaling of the graph of the function [tex]\( f(x) \)[/tex].
1. Understanding Function Transformations:
When we see a function in the form [tex]\( g(x) = f(bx) \)[/tex], it tells us that there is a horizontal scaling transformation. To determine the scale factor, we need to consider the value of [tex]\( b \)[/tex]:
- If [tex]\( 0 < b < 1 \)[/tex]: The graph of [tex]\( f(x) \)[/tex] is stretched horizontally by a scale factor of [tex]\( \frac{1}{b} \)[/tex].
- If [tex]\( b > 1 \)[/tex]: The graph of [tex]\( f(x) \)[/tex] is compressed horizontally by a scale factor of [tex]\( \frac{1}{b} \)[/tex].
2. Applying This Concept to Our Problem:
In our case, the transformation is [tex]\( g(x) = f\left(\frac{1}{3} x\right) \)[/tex], which gives us [tex]\( b = \frac{1}{3} \)[/tex].
- Since [tex]\( b = \frac{1}{3} \)[/tex] and [tex]\( 0 < \frac{1}{3} < 1 \)[/tex], this indicates that the graph of [tex]\( f(x) \)[/tex] will be stretched horizontally.
- The stretch factor is [tex]\( \frac{1}{b} \)[/tex]. So, we calculate [tex]\( \frac{1}{\frac{1}{3}} = 3 \)[/tex].
Thus, the graph of function [tex]\( f \)[/tex] is stretched horizontally by a scale factor of 3 to create the graph of function [tex]\( g \)[/tex]. This corresponds to option B.
So, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
[tex]\[ g(x) = f\left(\frac{1}{3} x\right) \][/tex]
This type of transformation involves the horizontal scaling of the graph of the function [tex]\( f(x) \)[/tex].
1. Understanding Function Transformations:
When we see a function in the form [tex]\( g(x) = f(bx) \)[/tex], it tells us that there is a horizontal scaling transformation. To determine the scale factor, we need to consider the value of [tex]\( b \)[/tex]:
- If [tex]\( 0 < b < 1 \)[/tex]: The graph of [tex]\( f(x) \)[/tex] is stretched horizontally by a scale factor of [tex]\( \frac{1}{b} \)[/tex].
- If [tex]\( b > 1 \)[/tex]: The graph of [tex]\( f(x) \)[/tex] is compressed horizontally by a scale factor of [tex]\( \frac{1}{b} \)[/tex].
2. Applying This Concept to Our Problem:
In our case, the transformation is [tex]\( g(x) = f\left(\frac{1}{3} x\right) \)[/tex], which gives us [tex]\( b = \frac{1}{3} \)[/tex].
- Since [tex]\( b = \frac{1}{3} \)[/tex] and [tex]\( 0 < \frac{1}{3} < 1 \)[/tex], this indicates that the graph of [tex]\( f(x) \)[/tex] will be stretched horizontally.
- The stretch factor is [tex]\( \frac{1}{b} \)[/tex]. So, we calculate [tex]\( \frac{1}{\frac{1}{3}} = 3 \)[/tex].
Thus, the graph of function [tex]\( f \)[/tex] is stretched horizontally by a scale factor of 3 to create the graph of function [tex]\( g \)[/tex]. This corresponds to option B.
So, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.