Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem of determining the mass of a substance after five days of continuous exponential growth, we follow these steps:
1. Identify the given variables:
- Initial mass ([tex]\(M_0\)[/tex]) = 354 grams
- Growth rate per day ([tex]\(r\)[/tex]) = 9% per day = 0.09 (in decimal form)
- Time period ([tex]\(t\)[/tex]) = 5 days
2. Understand the exponential growth formula:
The formula for continuous exponential growth is given by:
[tex]\[ M(t) = M_0 \cdot e^{rt} \][/tex]
where:
- [tex]\(M(t)\)[/tex] is the mass after time [tex]\(t\)[/tex],
- [tex]\(M_0\)[/tex] is the initial mass,
- [tex]\(e\)[/tex] is the base of the natural logarithm (approximately equal to 2.71828),
- [tex]\(r\)[/tex] is the growth rate,
- [tex]\(t\)[/tex] is the time period.
3. Substitute the given values into the formula:
[tex]\[ M(5) = 354 \cdot e^{0.09 \cdot 5} \][/tex]
4. Calculate the exponent:
[tex]\[ 0.09 \cdot 5 = 0.45 \][/tex]
5. Evaluate the exponential function:
[tex]\[ e^{0.45} \approx 1.568312185490169 \][/tex]
Note: This is the approximation of the value of [tex]\(e^{0.45}\)[/tex].
6. Calculate the final mass:
[tex]\[ M(5) = 354 \cdot 1.568312185490169 \approx 555.1825136635197 \text{ grams} \][/tex]
7. Round the final answer to the nearest tenth:
Thus, the mass after five days, rounded to the nearest tenth, is:
[tex]\[ \boxed{555.2 \text{ grams}} \][/tex]
Therefore, the mass of the sample after five days is approximately 555.2 grams.
1. Identify the given variables:
- Initial mass ([tex]\(M_0\)[/tex]) = 354 grams
- Growth rate per day ([tex]\(r\)[/tex]) = 9% per day = 0.09 (in decimal form)
- Time period ([tex]\(t\)[/tex]) = 5 days
2. Understand the exponential growth formula:
The formula for continuous exponential growth is given by:
[tex]\[ M(t) = M_0 \cdot e^{rt} \][/tex]
where:
- [tex]\(M(t)\)[/tex] is the mass after time [tex]\(t\)[/tex],
- [tex]\(M_0\)[/tex] is the initial mass,
- [tex]\(e\)[/tex] is the base of the natural logarithm (approximately equal to 2.71828),
- [tex]\(r\)[/tex] is the growth rate,
- [tex]\(t\)[/tex] is the time period.
3. Substitute the given values into the formula:
[tex]\[ M(5) = 354 \cdot e^{0.09 \cdot 5} \][/tex]
4. Calculate the exponent:
[tex]\[ 0.09 \cdot 5 = 0.45 \][/tex]
5. Evaluate the exponential function:
[tex]\[ e^{0.45} \approx 1.568312185490169 \][/tex]
Note: This is the approximation of the value of [tex]\(e^{0.45}\)[/tex].
6. Calculate the final mass:
[tex]\[ M(5) = 354 \cdot 1.568312185490169 \approx 555.1825136635197 \text{ grams} \][/tex]
7. Round the final answer to the nearest tenth:
Thus, the mass after five days, rounded to the nearest tenth, is:
[tex]\[ \boxed{555.2 \text{ grams}} \][/tex]
Therefore, the mass of the sample after five days is approximately 555.2 grams.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.