Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the transformations applied to the function [tex]\( f(x) = x^3 \)[/tex] to obtain [tex]\( h(x) = -(x+2)^3 - 4 \)[/tex], follow these steps:
1. Observe the inside of the cubic function [tex]\( -(x+2)^3 \)[/tex]. The [tex]\( +2 \)[/tex] inside the parenthesis indicates a horizontal translation. Since it's [tex]\( +2 \)[/tex], the translation is 2 units to the left.
2. Next, observe the [tex]\( -4 \)[/tex] outside of the cubic function [tex]\( (x+2)^3 \)[/tex]. This represents a vertical translation. Since it is [tex]\( -4 \)[/tex], the function is translated 4 units down.
3. Lastly, look at the negative sign in front of the cubic function [tex]\( -(x+2)^3 \)[/tex]. This negative sign indicates a reflection. Specifically, it's a reflection across the x-axis.
So, the transformations are:
1. The function was translated 2 units to the left.
2. The function was translated 4 units down.
3. The function was reflected across the x-axis.
Therefore, the correct answers for the drop-down menus are:
- Translated 2 units left.
- Translated 4 units down.
- Reflected across the x-axis.
1. Observe the inside of the cubic function [tex]\( -(x+2)^3 \)[/tex]. The [tex]\( +2 \)[/tex] inside the parenthesis indicates a horizontal translation. Since it's [tex]\( +2 \)[/tex], the translation is 2 units to the left.
2. Next, observe the [tex]\( -4 \)[/tex] outside of the cubic function [tex]\( (x+2)^3 \)[/tex]. This represents a vertical translation. Since it is [tex]\( -4 \)[/tex], the function is translated 4 units down.
3. Lastly, look at the negative sign in front of the cubic function [tex]\( -(x+2)^3 \)[/tex]. This negative sign indicates a reflection. Specifically, it's a reflection across the x-axis.
So, the transformations are:
1. The function was translated 2 units to the left.
2. The function was translated 4 units down.
3. The function was reflected across the x-axis.
Therefore, the correct answers for the drop-down menus are:
- Translated 2 units left.
- Translated 4 units down.
- Reflected across the x-axis.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.