At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the measure of the angle formed by the lines from each lamppost to Bob, we will use the Law of Cosines. The given distances are:
- The distance from Bob to the left lamppost: [tex]\( b = 25 \)[/tex] feet
- The distance from Bob to the right lamppost: [tex]\( c = 30 \)[/tex] feet
- The distance between the two lampposts: [tex]\( a = 20 \)[/tex] feet
According to the Law of Cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
1. Substitute the given values into the equation:
[tex]\[ 20^2 = 25^2 + 30^2 - 2(25)(30) \cos(A) \][/tex]
2. Calculate the squares and multiply:
[tex]\[ 400 = 625 + 900 - 2(25)(30) \cos(A) \][/tex]
3. Simplify the equation:
[tex]\[ 400 = 1525 - 1500 \cos(A) \][/tex]
4. Isolate the cosine term:
[tex]\[ 400 - 1525 = -1500 \cos(A) \][/tex]
[tex]\[ -1125 = -1500 \cos(A) \][/tex]
5. Solve for [tex]\(\cos(A)\)[/tex]:
[tex]\[ \cos(A) = \frac{-1125}{-1500} = 0.75 \][/tex]
6. Calculate the angle [tex]\(A\)[/tex] using the inverse cosine function:
[tex]\[ A = \cos^{-1}(0.75) \][/tex]
7. The angle [tex]\(A\)[/tex] in radians:
[tex]\[ A \approx 0.7227342478134157 \text{ radians} \][/tex]
8. Convert the angle from radians to degrees using the conversion [tex]\(180^\circ / \pi\)[/tex]:
[tex]\[ A \approx 41.40962210927086 \text{ degrees} \][/tex]
9. Round the angle to the nearest degree:
[tex]\[ A \approx 41^\circ \][/tex]
Thus, the measure of the angle formed by the lines from each lamppost to Bob is approximately [tex]\(41^\circ\)[/tex].
- The distance from Bob to the left lamppost: [tex]\( b = 25 \)[/tex] feet
- The distance from Bob to the right lamppost: [tex]\( c = 30 \)[/tex] feet
- The distance between the two lampposts: [tex]\( a = 20 \)[/tex] feet
According to the Law of Cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
1. Substitute the given values into the equation:
[tex]\[ 20^2 = 25^2 + 30^2 - 2(25)(30) \cos(A) \][/tex]
2. Calculate the squares and multiply:
[tex]\[ 400 = 625 + 900 - 2(25)(30) \cos(A) \][/tex]
3. Simplify the equation:
[tex]\[ 400 = 1525 - 1500 \cos(A) \][/tex]
4. Isolate the cosine term:
[tex]\[ 400 - 1525 = -1500 \cos(A) \][/tex]
[tex]\[ -1125 = -1500 \cos(A) \][/tex]
5. Solve for [tex]\(\cos(A)\)[/tex]:
[tex]\[ \cos(A) = \frac{-1125}{-1500} = 0.75 \][/tex]
6. Calculate the angle [tex]\(A\)[/tex] using the inverse cosine function:
[tex]\[ A = \cos^{-1}(0.75) \][/tex]
7. The angle [tex]\(A\)[/tex] in radians:
[tex]\[ A \approx 0.7227342478134157 \text{ radians} \][/tex]
8. Convert the angle from radians to degrees using the conversion [tex]\(180^\circ / \pi\)[/tex]:
[tex]\[ A \approx 41.40962210927086 \text{ degrees} \][/tex]
9. Round the angle to the nearest degree:
[tex]\[ A \approx 41^\circ \][/tex]
Thus, the measure of the angle formed by the lines from each lamppost to Bob is approximately [tex]\(41^\circ\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.