Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the measure of the angle formed by the lines from each lamppost to Bob, we will use the Law of Cosines. The given distances are:
- The distance from Bob to the left lamppost: [tex]\( b = 25 \)[/tex] feet
- The distance from Bob to the right lamppost: [tex]\( c = 30 \)[/tex] feet
- The distance between the two lampposts: [tex]\( a = 20 \)[/tex] feet
According to the Law of Cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
1. Substitute the given values into the equation:
[tex]\[ 20^2 = 25^2 + 30^2 - 2(25)(30) \cos(A) \][/tex]
2. Calculate the squares and multiply:
[tex]\[ 400 = 625 + 900 - 2(25)(30) \cos(A) \][/tex]
3. Simplify the equation:
[tex]\[ 400 = 1525 - 1500 \cos(A) \][/tex]
4. Isolate the cosine term:
[tex]\[ 400 - 1525 = -1500 \cos(A) \][/tex]
[tex]\[ -1125 = -1500 \cos(A) \][/tex]
5. Solve for [tex]\(\cos(A)\)[/tex]:
[tex]\[ \cos(A) = \frac{-1125}{-1500} = 0.75 \][/tex]
6. Calculate the angle [tex]\(A\)[/tex] using the inverse cosine function:
[tex]\[ A = \cos^{-1}(0.75) \][/tex]
7. The angle [tex]\(A\)[/tex] in radians:
[tex]\[ A \approx 0.7227342478134157 \text{ radians} \][/tex]
8. Convert the angle from radians to degrees using the conversion [tex]\(180^\circ / \pi\)[/tex]:
[tex]\[ A \approx 41.40962210927086 \text{ degrees} \][/tex]
9. Round the angle to the nearest degree:
[tex]\[ A \approx 41^\circ \][/tex]
Thus, the measure of the angle formed by the lines from each lamppost to Bob is approximately [tex]\(41^\circ\)[/tex].
- The distance from Bob to the left lamppost: [tex]\( b = 25 \)[/tex] feet
- The distance from Bob to the right lamppost: [tex]\( c = 30 \)[/tex] feet
- The distance between the two lampposts: [tex]\( a = 20 \)[/tex] feet
According to the Law of Cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
1. Substitute the given values into the equation:
[tex]\[ 20^2 = 25^2 + 30^2 - 2(25)(30) \cos(A) \][/tex]
2. Calculate the squares and multiply:
[tex]\[ 400 = 625 + 900 - 2(25)(30) \cos(A) \][/tex]
3. Simplify the equation:
[tex]\[ 400 = 1525 - 1500 \cos(A) \][/tex]
4. Isolate the cosine term:
[tex]\[ 400 - 1525 = -1500 \cos(A) \][/tex]
[tex]\[ -1125 = -1500 \cos(A) \][/tex]
5. Solve for [tex]\(\cos(A)\)[/tex]:
[tex]\[ \cos(A) = \frac{-1125}{-1500} = 0.75 \][/tex]
6. Calculate the angle [tex]\(A\)[/tex] using the inverse cosine function:
[tex]\[ A = \cos^{-1}(0.75) \][/tex]
7. The angle [tex]\(A\)[/tex] in radians:
[tex]\[ A \approx 0.7227342478134157 \text{ radians} \][/tex]
8. Convert the angle from radians to degrees using the conversion [tex]\(180^\circ / \pi\)[/tex]:
[tex]\[ A \approx 41.40962210927086 \text{ degrees} \][/tex]
9. Round the angle to the nearest degree:
[tex]\[ A \approx 41^\circ \][/tex]
Thus, the measure of the angle formed by the lines from each lamppost to Bob is approximately [tex]\(41^\circ\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.