Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's start by understanding the given information and the geometric setup of the problem:
1. Lengths Given:
- The ladder length (hypotenuse) is 12 feet.
- The distance from the base of the wall to the base of the ladder is [tex]\(6 \sqrt{2}\)[/tex] feet.
We need to analyze the properties of the triangle formed by the ground (base), wall (height), and ladder (hypotenuse).
2. Height of the Wall:
Using the Pythagorean theorem:
[tex]\[ \text{hypotenuse}^2 = \text{base}^2 + \text{height}^2 \][/tex]
Given:
- Hypotenuse = 12 feet
- Base = [tex]\(6\sqrt{2}\)[/tex] feet
Substitute these values into the equation:
[tex]\[ 12^2 = (6\sqrt{2})^2 + \text{height}^2 \][/tex]
[tex]\[ 144 = 72 + \text{height}^2 \][/tex]
Solving for height:
[tex]\[ \text{height}^2 = 144 - 72 \][/tex]
[tex]\[ \text{height}^2 = 72 \][/tex]
[tex]\[ \text{height} = \sqrt{72} = 6\sqrt{2} \approx 8.49 \text{ feet} \][/tex]
3. Checking Triangle Properties:
- Isosceles Triangle:
The triangle is isosceles if two sides are of equal length. In this case:
[tex]\[ \text{Base} \neq \text{Height} \quad (6\sqrt{2} \neq 6\sqrt{2}) \][/tex]
Therefore, the triangle is not isosceles.
- Leg-to-Hypotenuse Ratios:
- Ratio 1: The leg-to-hypotenuse ratio [tex]\(1:\sqrt{2}\)[/tex] means:
[tex]\[ \frac{\text{leg}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} \][/tex]
Checking with given base:
[tex]\[ \frac{6\sqrt{2}}{12} = \frac{1}{2} \neq \frac{1}{\sqrt{2}} \][/tex]
- The leg-to-hypotenuse ratio is not [tex]\(1:\sqrt{2}\)[/tex].
- Ratio 2: The leg-to-hypotenuse ratio [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex] means:
[tex]\[ \frac{\text{leg}}{\text{hypotenuse}} = \frac{1}{\left(\frac{\sqrt{2}}{2}\right)} = \frac{\frac{\sqrt{2}}{2}} = \sqrt{2} \][/tex]
Checking with given base:
[tex]\[ \frac{6\sqrt{2}}{12} = \frac{1}{2} \neq \sqrt{2} \][/tex]
- The leg-to-hypotenuse ratio is not [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex].
- Nonright Angles Congruent:
Nonright angles are congruent if the triangle is isosceles. Since our triangle is not isosceles, the nonright angles are not congruent.
- Ladder as the Longest Length:
The ladder, being the hypotenuse, is always the longest side in a right-angled triangle.
Hence, the ladder represents the longest length in the triangle.
4. Conclusion:
Based on the analysis above, the correct conclusions about the triangle are:
- The triangle is not isosceles.
- The leg-to-hypotenuse ratio is neither [tex]\(1:\sqrt{2}\)[/tex] nor [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex].
- The nonright angles are not congruent.
- The ladder represents the longest length in the triangle.
So, the applicable property is:
- The ladder represents the longest length in the triangle.
1. Lengths Given:
- The ladder length (hypotenuse) is 12 feet.
- The distance from the base of the wall to the base of the ladder is [tex]\(6 \sqrt{2}\)[/tex] feet.
We need to analyze the properties of the triangle formed by the ground (base), wall (height), and ladder (hypotenuse).
2. Height of the Wall:
Using the Pythagorean theorem:
[tex]\[ \text{hypotenuse}^2 = \text{base}^2 + \text{height}^2 \][/tex]
Given:
- Hypotenuse = 12 feet
- Base = [tex]\(6\sqrt{2}\)[/tex] feet
Substitute these values into the equation:
[tex]\[ 12^2 = (6\sqrt{2})^2 + \text{height}^2 \][/tex]
[tex]\[ 144 = 72 + \text{height}^2 \][/tex]
Solving for height:
[tex]\[ \text{height}^2 = 144 - 72 \][/tex]
[tex]\[ \text{height}^2 = 72 \][/tex]
[tex]\[ \text{height} = \sqrt{72} = 6\sqrt{2} \approx 8.49 \text{ feet} \][/tex]
3. Checking Triangle Properties:
- Isosceles Triangle:
The triangle is isosceles if two sides are of equal length. In this case:
[tex]\[ \text{Base} \neq \text{Height} \quad (6\sqrt{2} \neq 6\sqrt{2}) \][/tex]
Therefore, the triangle is not isosceles.
- Leg-to-Hypotenuse Ratios:
- Ratio 1: The leg-to-hypotenuse ratio [tex]\(1:\sqrt{2}\)[/tex] means:
[tex]\[ \frac{\text{leg}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} \][/tex]
Checking with given base:
[tex]\[ \frac{6\sqrt{2}}{12} = \frac{1}{2} \neq \frac{1}{\sqrt{2}} \][/tex]
- The leg-to-hypotenuse ratio is not [tex]\(1:\sqrt{2}\)[/tex].
- Ratio 2: The leg-to-hypotenuse ratio [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex] means:
[tex]\[ \frac{\text{leg}}{\text{hypotenuse}} = \frac{1}{\left(\frac{\sqrt{2}}{2}\right)} = \frac{\frac{\sqrt{2}}{2}} = \sqrt{2} \][/tex]
Checking with given base:
[tex]\[ \frac{6\sqrt{2}}{12} = \frac{1}{2} \neq \sqrt{2} \][/tex]
- The leg-to-hypotenuse ratio is not [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex].
- Nonright Angles Congruent:
Nonright angles are congruent if the triangle is isosceles. Since our triangle is not isosceles, the nonright angles are not congruent.
- Ladder as the Longest Length:
The ladder, being the hypotenuse, is always the longest side in a right-angled triangle.
Hence, the ladder represents the longest length in the triangle.
4. Conclusion:
Based on the analysis above, the correct conclusions about the triangle are:
- The triangle is not isosceles.
- The leg-to-hypotenuse ratio is neither [tex]\(1:\sqrt{2}\)[/tex] nor [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex].
- The nonright angles are not congruent.
- The ladder represents the longest length in the triangle.
So, the applicable property is:
- The ladder represents the longest length in the triangle.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.