Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's start by understanding the given information and the geometric setup of the problem:
1. Lengths Given:
- The ladder length (hypotenuse) is 12 feet.
- The distance from the base of the wall to the base of the ladder is [tex]\(6 \sqrt{2}\)[/tex] feet.
We need to analyze the properties of the triangle formed by the ground (base), wall (height), and ladder (hypotenuse).
2. Height of the Wall:
Using the Pythagorean theorem:
[tex]\[ \text{hypotenuse}^2 = \text{base}^2 + \text{height}^2 \][/tex]
Given:
- Hypotenuse = 12 feet
- Base = [tex]\(6\sqrt{2}\)[/tex] feet
Substitute these values into the equation:
[tex]\[ 12^2 = (6\sqrt{2})^2 + \text{height}^2 \][/tex]
[tex]\[ 144 = 72 + \text{height}^2 \][/tex]
Solving for height:
[tex]\[ \text{height}^2 = 144 - 72 \][/tex]
[tex]\[ \text{height}^2 = 72 \][/tex]
[tex]\[ \text{height} = \sqrt{72} = 6\sqrt{2} \approx 8.49 \text{ feet} \][/tex]
3. Checking Triangle Properties:
- Isosceles Triangle:
The triangle is isosceles if two sides are of equal length. In this case:
[tex]\[ \text{Base} \neq \text{Height} \quad (6\sqrt{2} \neq 6\sqrt{2}) \][/tex]
Therefore, the triangle is not isosceles.
- Leg-to-Hypotenuse Ratios:
- Ratio 1: The leg-to-hypotenuse ratio [tex]\(1:\sqrt{2}\)[/tex] means:
[tex]\[ \frac{\text{leg}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} \][/tex]
Checking with given base:
[tex]\[ \frac{6\sqrt{2}}{12} = \frac{1}{2} \neq \frac{1}{\sqrt{2}} \][/tex]
- The leg-to-hypotenuse ratio is not [tex]\(1:\sqrt{2}\)[/tex].
- Ratio 2: The leg-to-hypotenuse ratio [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex] means:
[tex]\[ \frac{\text{leg}}{\text{hypotenuse}} = \frac{1}{\left(\frac{\sqrt{2}}{2}\right)} = \frac{\frac{\sqrt{2}}{2}} = \sqrt{2} \][/tex]
Checking with given base:
[tex]\[ \frac{6\sqrt{2}}{12} = \frac{1}{2} \neq \sqrt{2} \][/tex]
- The leg-to-hypotenuse ratio is not [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex].
- Nonright Angles Congruent:
Nonright angles are congruent if the triangle is isosceles. Since our triangle is not isosceles, the nonright angles are not congruent.
- Ladder as the Longest Length:
The ladder, being the hypotenuse, is always the longest side in a right-angled triangle.
Hence, the ladder represents the longest length in the triangle.
4. Conclusion:
Based on the analysis above, the correct conclusions about the triangle are:
- The triangle is not isosceles.
- The leg-to-hypotenuse ratio is neither [tex]\(1:\sqrt{2}\)[/tex] nor [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex].
- The nonright angles are not congruent.
- The ladder represents the longest length in the triangle.
So, the applicable property is:
- The ladder represents the longest length in the triangle.
1. Lengths Given:
- The ladder length (hypotenuse) is 12 feet.
- The distance from the base of the wall to the base of the ladder is [tex]\(6 \sqrt{2}\)[/tex] feet.
We need to analyze the properties of the triangle formed by the ground (base), wall (height), and ladder (hypotenuse).
2. Height of the Wall:
Using the Pythagorean theorem:
[tex]\[ \text{hypotenuse}^2 = \text{base}^2 + \text{height}^2 \][/tex]
Given:
- Hypotenuse = 12 feet
- Base = [tex]\(6\sqrt{2}\)[/tex] feet
Substitute these values into the equation:
[tex]\[ 12^2 = (6\sqrt{2})^2 + \text{height}^2 \][/tex]
[tex]\[ 144 = 72 + \text{height}^2 \][/tex]
Solving for height:
[tex]\[ \text{height}^2 = 144 - 72 \][/tex]
[tex]\[ \text{height}^2 = 72 \][/tex]
[tex]\[ \text{height} = \sqrt{72} = 6\sqrt{2} \approx 8.49 \text{ feet} \][/tex]
3. Checking Triangle Properties:
- Isosceles Triangle:
The triangle is isosceles if two sides are of equal length. In this case:
[tex]\[ \text{Base} \neq \text{Height} \quad (6\sqrt{2} \neq 6\sqrt{2}) \][/tex]
Therefore, the triangle is not isosceles.
- Leg-to-Hypotenuse Ratios:
- Ratio 1: The leg-to-hypotenuse ratio [tex]\(1:\sqrt{2}\)[/tex] means:
[tex]\[ \frac{\text{leg}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} \][/tex]
Checking with given base:
[tex]\[ \frac{6\sqrt{2}}{12} = \frac{1}{2} \neq \frac{1}{\sqrt{2}} \][/tex]
- The leg-to-hypotenuse ratio is not [tex]\(1:\sqrt{2}\)[/tex].
- Ratio 2: The leg-to-hypotenuse ratio [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex] means:
[tex]\[ \frac{\text{leg}}{\text{hypotenuse}} = \frac{1}{\left(\frac{\sqrt{2}}{2}\right)} = \frac{\frac{\sqrt{2}}{2}} = \sqrt{2} \][/tex]
Checking with given base:
[tex]\[ \frac{6\sqrt{2}}{12} = \frac{1}{2} \neq \sqrt{2} \][/tex]
- The leg-to-hypotenuse ratio is not [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex].
- Nonright Angles Congruent:
Nonright angles are congruent if the triangle is isosceles. Since our triangle is not isosceles, the nonright angles are not congruent.
- Ladder as the Longest Length:
The ladder, being the hypotenuse, is always the longest side in a right-angled triangle.
Hence, the ladder represents the longest length in the triangle.
4. Conclusion:
Based on the analysis above, the correct conclusions about the triangle are:
- The triangle is not isosceles.
- The leg-to-hypotenuse ratio is neither [tex]\(1:\sqrt{2}\)[/tex] nor [tex]\(1:\frac{\sqrt{2}}{2}\)[/tex].
- The nonright angles are not congruent.
- The ladder represents the longest length in the triangle.
So, the applicable property is:
- The ladder represents the longest length in the triangle.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.