Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the given linear programming problem, we need to maximize the objective function subject to the constraints. Let’s go through this step by step.
### Step 1: Define the Objective Function
The objective function is to maximize [tex]\( z = 2x + 9y \)[/tex].
### Step 2: Define the Constraints
The constraints for the problem are:
1. [tex]\( x \geq 0 \)[/tex]
2. [tex]\( y \geq 0 \)[/tex]
3. [tex]\( x + y \leq 24 \)[/tex]
4. [tex]\( 4x + y \geq 24 \)[/tex]
5. [tex]\( x + 4y \geq 24 \)[/tex]
### Step 3: Convert Inequalities to Suitable Form for Graphical Solution
First, we would reorganize the inequalities if necessary to match typical [tex]\( \leq \)[/tex] or [tex]\( \geq \)[/tex] form for easier graphical representation or standard method solving.
### Step 4: Identify the Feasible Region
The feasible region is the set of all points [tex]\((x, y)\)[/tex] that satisfy all the constraints similar to below:
- The line [tex]\( x + y = 24 \)[/tex] forms an upper boundary.
- The line [tex]\( 4x + y = 24 \)[/tex] creates a lower boundary.
- The line [tex]\( x + 4y = 24 \)[/tex] also creates a lower boundary.
- [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex] limit the feasible region to the first quadrant.
### Step 5: Determine Intersection Points (Vertices)
We need to check either lines intersections points or manually solving as:
- Intersection of [tex]\( x + y = 24 \)[/tex] and [tex]\( 4x + y = 24 \)[/tex]:
[tex]\[ x + y = 24 \\ 4x + y = 24 \implies 3x = 0 \implies x = 0, y = 24 \][/tex]
- Intersection of [tex]\( x + y = 24 \)[/tex] and [tex]\( x + 4y = 24 \)[/tex]:
[tex]\[ x + y = 24 \\ x + 4y = 24 \implies 3y = 0 \implies y = 0, x = 24 \][/tex]
- Intersection of [tex]\( 4x + y = 24 \)[/tex] and [tex]\( x + 4y = 24 \)[/tex] needs less direct visibility, solved typically by substitution or elimination, provide solution but zero:
[tex]\[ y = \frac{24 - 4x}{4}; x=0; y = 6 and intersection not considered feasible. \][/tex]
### Step 6: Evaluate the Objective Function at Each Vertex
Evaluate [tex]\( z = 2x + 9y \)[/tex] for points
1. At [tex]\((0, 24)\)[/tex]
[tex]\[ z = 2(0) + 9(24) = 216 \][/tex]
2. At [tex]\((24, 0)\)[/tex]
[tex]\[ z = 2(24) + 9(0) = 48 \][/tex]
### Step 7: Choose the Maximum Value
Comparing the values, [tex]\( z = 216 \)[/tex] is the largest.
Thus, the values that maximize the objective function [tex]\( 2x + 9y \)[/tex] under the given constraints are:
- [tex]\( x = 0 \)[/tex]
- [tex]\( y = 24 \)[/tex]
- The maximum value [tex]\( z = 216 \)[/tex]
So, the solution to the given linear programming problem is [tex]\( x = 0 \)[/tex], [tex]\( y = 24 \)[/tex], and the maximum value of [tex]\( z = 216 \)[/tex].
### Step 1: Define the Objective Function
The objective function is to maximize [tex]\( z = 2x + 9y \)[/tex].
### Step 2: Define the Constraints
The constraints for the problem are:
1. [tex]\( x \geq 0 \)[/tex]
2. [tex]\( y \geq 0 \)[/tex]
3. [tex]\( x + y \leq 24 \)[/tex]
4. [tex]\( 4x + y \geq 24 \)[/tex]
5. [tex]\( x + 4y \geq 24 \)[/tex]
### Step 3: Convert Inequalities to Suitable Form for Graphical Solution
First, we would reorganize the inequalities if necessary to match typical [tex]\( \leq \)[/tex] or [tex]\( \geq \)[/tex] form for easier graphical representation or standard method solving.
### Step 4: Identify the Feasible Region
The feasible region is the set of all points [tex]\((x, y)\)[/tex] that satisfy all the constraints similar to below:
- The line [tex]\( x + y = 24 \)[/tex] forms an upper boundary.
- The line [tex]\( 4x + y = 24 \)[/tex] creates a lower boundary.
- The line [tex]\( x + 4y = 24 \)[/tex] also creates a lower boundary.
- [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex] limit the feasible region to the first quadrant.
### Step 5: Determine Intersection Points (Vertices)
We need to check either lines intersections points or manually solving as:
- Intersection of [tex]\( x + y = 24 \)[/tex] and [tex]\( 4x + y = 24 \)[/tex]:
[tex]\[ x + y = 24 \\ 4x + y = 24 \implies 3x = 0 \implies x = 0, y = 24 \][/tex]
- Intersection of [tex]\( x + y = 24 \)[/tex] and [tex]\( x + 4y = 24 \)[/tex]:
[tex]\[ x + y = 24 \\ x + 4y = 24 \implies 3y = 0 \implies y = 0, x = 24 \][/tex]
- Intersection of [tex]\( 4x + y = 24 \)[/tex] and [tex]\( x + 4y = 24 \)[/tex] needs less direct visibility, solved typically by substitution or elimination, provide solution but zero:
[tex]\[ y = \frac{24 - 4x}{4}; x=0; y = 6 and intersection not considered feasible. \][/tex]
### Step 6: Evaluate the Objective Function at Each Vertex
Evaluate [tex]\( z = 2x + 9y \)[/tex] for points
1. At [tex]\((0, 24)\)[/tex]
[tex]\[ z = 2(0) + 9(24) = 216 \][/tex]
2. At [tex]\((24, 0)\)[/tex]
[tex]\[ z = 2(24) + 9(0) = 48 \][/tex]
### Step 7: Choose the Maximum Value
Comparing the values, [tex]\( z = 216 \)[/tex] is the largest.
Thus, the values that maximize the objective function [tex]\( 2x + 9y \)[/tex] under the given constraints are:
- [tex]\( x = 0 \)[/tex]
- [tex]\( y = 24 \)[/tex]
- The maximum value [tex]\( z = 216 \)[/tex]
So, the solution to the given linear programming problem is [tex]\( x = 0 \)[/tex], [tex]\( y = 24 \)[/tex], and the maximum value of [tex]\( z = 216 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.