Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the solution set of the system of equations:
[tex]\[ \left\{ \begin{array}{l} 2x - y = 5 \\ 3y + 15 = 6x \end{array} \right. \][/tex]
we will solve this system step-by-step.
### Step 1: Solve the first equation for [tex]\( y \)[/tex]
The first equation is:
[tex]\[ 2x - y = 5 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ y = 2x - 5 \][/tex]
### Step 2: Substitute [tex]\( y \)[/tex] in the second equation
We now have [tex]\( y = 2x - 5 \)[/tex]. Substitute this into the second equation:
[tex]\[ 3(2x - 5) + 15 = 6x \][/tex]
### Step 3: Simplify the equation
Expand and simplify:
[tex]\[ 6x - 15 + 15 = 6x \][/tex]
[tex]\[ 6x = 6x \][/tex]
This is an identity, meaning it is true for all [tex]\( x \in \mathbb{R} \)[/tex].
### Step 4: Conclusion
Since the second equation holds true for any [tex]\( x \)[/tex], there are infinitely many solutions. The solution set is determined by the relation [tex]\( y = 2x - 5 \)[/tex].
### Step 5: Define the solution set
Therefore, the solution set can be written as follows:
[tex]\[ \{(x, y) \mid y = 2x - 5, x \in \mathbb{R}\} \][/tex]
In the context of the provided answer choices, this matches with:
C. [tex]\(\{(t, 2t - 5) \mid t \in \mathbb{R}\}\)[/tex]
Thus, the answer is:
C. [tex]\(\{(t, 2t - 5) \mid t \in \mathbb{R}\}\)[/tex]
[tex]\[ \left\{ \begin{array}{l} 2x - y = 5 \\ 3y + 15 = 6x \end{array} \right. \][/tex]
we will solve this system step-by-step.
### Step 1: Solve the first equation for [tex]\( y \)[/tex]
The first equation is:
[tex]\[ 2x - y = 5 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ y = 2x - 5 \][/tex]
### Step 2: Substitute [tex]\( y \)[/tex] in the second equation
We now have [tex]\( y = 2x - 5 \)[/tex]. Substitute this into the second equation:
[tex]\[ 3(2x - 5) + 15 = 6x \][/tex]
### Step 3: Simplify the equation
Expand and simplify:
[tex]\[ 6x - 15 + 15 = 6x \][/tex]
[tex]\[ 6x = 6x \][/tex]
This is an identity, meaning it is true for all [tex]\( x \in \mathbb{R} \)[/tex].
### Step 4: Conclusion
Since the second equation holds true for any [tex]\( x \)[/tex], there are infinitely many solutions. The solution set is determined by the relation [tex]\( y = 2x - 5 \)[/tex].
### Step 5: Define the solution set
Therefore, the solution set can be written as follows:
[tex]\[ \{(x, y) \mid y = 2x - 5, x \in \mathbb{R}\} \][/tex]
In the context of the provided answer choices, this matches with:
C. [tex]\(\{(t, 2t - 5) \mid t \in \mathbb{R}\}\)[/tex]
Thus, the answer is:
C. [tex]\(\{(t, 2t - 5) \mid t \in \mathbb{R}\}\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.