Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve this problem, let's break it down step by step:
1. Identify the Given Terms:
We are given:
- The 25th term of the arithmetic sequence ([tex]\(a_{25}\)[/tex]) is 0.
- The 60th term of the arithmetic sequence ([tex]\(a_{60}\)[/tex]) is -105.
2. Calculate the Common Difference:
The formula for the [tex]\(n\)[/tex]th term of an arithmetic sequence is:
[tex]\[ a_n = a + (n - 1) \cdot d \][/tex]
where:
- [tex]\(a\)[/tex] is the first term,
- [tex]\(d\)[/tex] is the common difference,
- [tex]\(n\)[/tex] is the position of the term in the sequence.
For the 25th term ([tex]\(a_{25}\)[/tex]):
[tex]\[ a_{25} = a + 24 \cdot d = 0 \][/tex]
For the 60th term ([tex]\(a_{60}\)[/tex]):
[tex]\[ a_{60} = a + 59 \cdot d = -105 \][/tex]
To find the common difference [tex]\(d\)[/tex], subtract the equation for the 25th term from the equation for the 60th term:
[tex]\[ (a + 59d) - (a + 24d) = -105 - 0 \][/tex]
Simplify this equation:
[tex]\[ 35d = -105 \][/tex]
Solve for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{-105}{35} = -3 \][/tex]
3. Calculate the First Term:
Now, use the value of [tex]\(d\)[/tex] to find the first term [tex]\(a\)[/tex]. Using the relation from the 25th term:
[tex]\[ 0 = a + 24 \cdot (-3) \][/tex]
Simplify and solve for [tex]\(a\)[/tex]:
[tex]\[ 0 = a - 72 \implies a = 72 \][/tex]
4. Recursive Formula for the Sequence:
The recursive formula for the arithmetic sequence provides a way to find the [tex]\(n\)[/tex]th term based on the [tex]\((n-1)\)[/tex]th term. Since the common difference [tex]\(d\)[/tex] is -3, the recursive formula is:
[tex]\[ a(n) = a(n-1) + (-3) \][/tex]
Or more simply:
[tex]\[ a(n) = a(n-1) - 3 \][/tex]
5. Formula for the [tex]\(n^{\text{th}}\)[/tex] Term:
Using the general formula for the [tex]\(n\)[/tex]th term of an arithmetic sequence:
[tex]\[ a_n = a + (n - 1) \cdot d \][/tex]
Substitute [tex]\(a = 72\)[/tex] and [tex]\(d = -3\)[/tex]:
[tex]\[ a_n = 72 + (n - 1) \cdot (-3) \][/tex]
Simplify this formula:
[tex]\[ a_n = 72 - 3(n - 1) = 72 - 3n + 3 = 75 - 3n \][/tex]
In summary:
- The first term [tex]\(a\)[/tex] is [tex]\(72\)[/tex].
- The common difference [tex]\(d\)[/tex] is [tex]\(-3\)[/tex].
- The recursive formula for the sequence is [tex]\(a(n) = a(n-1) - 3\)[/tex].
- The formula for the [tex]\(n\)[/tex]th term is [tex]\(a_n = 75 - 3n\)[/tex].
1. Identify the Given Terms:
We are given:
- The 25th term of the arithmetic sequence ([tex]\(a_{25}\)[/tex]) is 0.
- The 60th term of the arithmetic sequence ([tex]\(a_{60}\)[/tex]) is -105.
2. Calculate the Common Difference:
The formula for the [tex]\(n\)[/tex]th term of an arithmetic sequence is:
[tex]\[ a_n = a + (n - 1) \cdot d \][/tex]
where:
- [tex]\(a\)[/tex] is the first term,
- [tex]\(d\)[/tex] is the common difference,
- [tex]\(n\)[/tex] is the position of the term in the sequence.
For the 25th term ([tex]\(a_{25}\)[/tex]):
[tex]\[ a_{25} = a + 24 \cdot d = 0 \][/tex]
For the 60th term ([tex]\(a_{60}\)[/tex]):
[tex]\[ a_{60} = a + 59 \cdot d = -105 \][/tex]
To find the common difference [tex]\(d\)[/tex], subtract the equation for the 25th term from the equation for the 60th term:
[tex]\[ (a + 59d) - (a + 24d) = -105 - 0 \][/tex]
Simplify this equation:
[tex]\[ 35d = -105 \][/tex]
Solve for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{-105}{35} = -3 \][/tex]
3. Calculate the First Term:
Now, use the value of [tex]\(d\)[/tex] to find the first term [tex]\(a\)[/tex]. Using the relation from the 25th term:
[tex]\[ 0 = a + 24 \cdot (-3) \][/tex]
Simplify and solve for [tex]\(a\)[/tex]:
[tex]\[ 0 = a - 72 \implies a = 72 \][/tex]
4. Recursive Formula for the Sequence:
The recursive formula for the arithmetic sequence provides a way to find the [tex]\(n\)[/tex]th term based on the [tex]\((n-1)\)[/tex]th term. Since the common difference [tex]\(d\)[/tex] is -3, the recursive formula is:
[tex]\[ a(n) = a(n-1) + (-3) \][/tex]
Or more simply:
[tex]\[ a(n) = a(n-1) - 3 \][/tex]
5. Formula for the [tex]\(n^{\text{th}}\)[/tex] Term:
Using the general formula for the [tex]\(n\)[/tex]th term of an arithmetic sequence:
[tex]\[ a_n = a + (n - 1) \cdot d \][/tex]
Substitute [tex]\(a = 72\)[/tex] and [tex]\(d = -3\)[/tex]:
[tex]\[ a_n = 72 + (n - 1) \cdot (-3) \][/tex]
Simplify this formula:
[tex]\[ a_n = 72 - 3(n - 1) = 72 - 3n + 3 = 75 - 3n \][/tex]
In summary:
- The first term [tex]\(a\)[/tex] is [tex]\(72\)[/tex].
- The common difference [tex]\(d\)[/tex] is [tex]\(-3\)[/tex].
- The recursive formula for the sequence is [tex]\(a(n) = a(n-1) - 3\)[/tex].
- The formula for the [tex]\(n\)[/tex]th term is [tex]\(a_n = 75 - 3n\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.