Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the relative complement of [tex]\( A \)[/tex] with respect to [tex]\( B \)[/tex], we need to find the elements that are in [tex]\( B \)[/tex] but not in [tex]\( A \)[/tex].
Given sets:
[tex]\[ A = \{-1, \{0\}, \{-1, 0\}\} \][/tex]
[tex]\[ B = \{\{-1\}, -1, 0\} \][/tex]
Let's analyze which elements of [tex]\( B \)[/tex] are not in [tex]\( A \)[/tex] step-by-step:
1. Element analysis from [tex]\( B \)[/tex]:
- The element [tex]\( 0 \)[/tex] is in [tex]\( B \)[/tex]. We need to see if [tex]\( 0 \)[/tex] is in [tex]\( A \)[/tex]:
Since [tex]\( A \)[/tex] contains [tex]\(-1\)[/tex], \{\{0\}\}, and \{\{-1, 0\}\}, but does not contain [tex]\( 0 \)[/tex] by itself, [tex]\( 0 \)[/tex] is in [tex]\( B \)[/tex] but not in [tex]\( A \)[/tex].
- The element \{-1\} (which is a set containing [tex]\(-1\)[/tex]) is in [tex]\( B \)[/tex]. We need to see if [tex]\( \{-1\} \)[/tex] is in [tex]\( A \)[/tex]:
[tex]\( A \)[/tex] does not contain \{-1\} (it only contains the individual element [tex]\(-1\)[/tex]), so \{-1\} is also in [tex]\( B \)[/tex] but not in [tex]\( A \)[/tex].
2. Additional elements:
- The element [tex]\(-1\)[/tex] is in both [tex]\( A \)[/tex] and [tex]\( B \)[/tex], so it is not included in the relative complement since we are looking for elements in [tex]\( B \)[/tex] that are not in [tex]\( A \)[/tex].
By compiling our findings:
- The elements which are in [tex]\( B \)[/tex] but not in [tex]\( A \)[/tex] are [tex]\( 0 \)[/tex] and \{-1\}.
Hence, the relative complement of [tex]\( A \)[/tex] with respect to [tex]\( B \)[/tex] is:
[tex]\[ \{0, \{-1\}\} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\{0, \{-1\}\}} \][/tex]
So option A, [tex]\(\{\{-1\}, 0\}\)[/tex], is correct.
Given sets:
[tex]\[ A = \{-1, \{0\}, \{-1, 0\}\} \][/tex]
[tex]\[ B = \{\{-1\}, -1, 0\} \][/tex]
Let's analyze which elements of [tex]\( B \)[/tex] are not in [tex]\( A \)[/tex] step-by-step:
1. Element analysis from [tex]\( B \)[/tex]:
- The element [tex]\( 0 \)[/tex] is in [tex]\( B \)[/tex]. We need to see if [tex]\( 0 \)[/tex] is in [tex]\( A \)[/tex]:
Since [tex]\( A \)[/tex] contains [tex]\(-1\)[/tex], \{\{0\}\}, and \{\{-1, 0\}\}, but does not contain [tex]\( 0 \)[/tex] by itself, [tex]\( 0 \)[/tex] is in [tex]\( B \)[/tex] but not in [tex]\( A \)[/tex].
- The element \{-1\} (which is a set containing [tex]\(-1\)[/tex]) is in [tex]\( B \)[/tex]. We need to see if [tex]\( \{-1\} \)[/tex] is in [tex]\( A \)[/tex]:
[tex]\( A \)[/tex] does not contain \{-1\} (it only contains the individual element [tex]\(-1\)[/tex]), so \{-1\} is also in [tex]\( B \)[/tex] but not in [tex]\( A \)[/tex].
2. Additional elements:
- The element [tex]\(-1\)[/tex] is in both [tex]\( A \)[/tex] and [tex]\( B \)[/tex], so it is not included in the relative complement since we are looking for elements in [tex]\( B \)[/tex] that are not in [tex]\( A \)[/tex].
By compiling our findings:
- The elements which are in [tex]\( B \)[/tex] but not in [tex]\( A \)[/tex] are [tex]\( 0 \)[/tex] and \{-1\}.
Hence, the relative complement of [tex]\( A \)[/tex] with respect to [tex]\( B \)[/tex] is:
[tex]\[ \{0, \{-1\}\} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\{0, \{-1\}\}} \][/tex]
So option A, [tex]\(\{\{-1\}, 0\}\)[/tex], is correct.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.