Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To thoroughly understand and solve the given polynomial expression, let's break it down and analyze it step-by-step.
### Given Polynomial:
[tex]\[ 3x^4 - 11x^2 - 20 \][/tex]
### Step-by-Step Solution:
1. Identify the Degree of the Polynomial:
- The highest power of [tex]\( x \)[/tex] in the polynomial [tex]\( 3x^4 - 11x^2 - 20 \)[/tex] is 4.
- Therefore, this is a 4th-degree polynomial.
2. Breakdown of Terms:
- The polynomial consists of three terms: [tex]\( 3x^4 \)[/tex], [tex]\(-11x^2\)[/tex], and [tex]\(-20\)[/tex].
- These terms include:
- [tex]\( 3x^4 \)[/tex]: A term with [tex]\( x \)[/tex] raised to the power of 4, which is the highest degree term.
- [tex]\( -11x^2 \)[/tex]: A term with [tex]\( x \)[/tex] raised to the power of 2.
- [tex]\( -20 \)[/tex]: A constant term.
3. Understanding the Structure:
- Polynomials of this form can be factored or analyzed for their roots. However, as the instruction suggests, no further calculations should be made, and the expression is taken as it is.
4. Conclusion:
- The polynomial [tex]\( 3x^4 - 11x^2 - 20 \)[/tex] is a 4th-degree polynomial where the coefficients of the terms [tex]\( x^4 \)[/tex] and [tex]\( x^2 \)[/tex] are 3 and -11, respectively, and the constant term is -20.
Thus, the polynomial we've analyzed is:
[tex]\[ 3x^4 - 11x^2 - 20 \][/tex]
This concludes our detailed breakdown of the polynomial expression given.
### Given Polynomial:
[tex]\[ 3x^4 - 11x^2 - 20 \][/tex]
### Step-by-Step Solution:
1. Identify the Degree of the Polynomial:
- The highest power of [tex]\( x \)[/tex] in the polynomial [tex]\( 3x^4 - 11x^2 - 20 \)[/tex] is 4.
- Therefore, this is a 4th-degree polynomial.
2. Breakdown of Terms:
- The polynomial consists of three terms: [tex]\( 3x^4 \)[/tex], [tex]\(-11x^2\)[/tex], and [tex]\(-20\)[/tex].
- These terms include:
- [tex]\( 3x^4 \)[/tex]: A term with [tex]\( x \)[/tex] raised to the power of 4, which is the highest degree term.
- [tex]\( -11x^2 \)[/tex]: A term with [tex]\( x \)[/tex] raised to the power of 2.
- [tex]\( -20 \)[/tex]: A constant term.
3. Understanding the Structure:
- Polynomials of this form can be factored or analyzed for their roots. However, as the instruction suggests, no further calculations should be made, and the expression is taken as it is.
4. Conclusion:
- The polynomial [tex]\( 3x^4 - 11x^2 - 20 \)[/tex] is a 4th-degree polynomial where the coefficients of the terms [tex]\( x^4 \)[/tex] and [tex]\( x^2 \)[/tex] are 3 and -11, respectively, and the constant term is -20.
Thus, the polynomial we've analyzed is:
[tex]\[ 3x^4 - 11x^2 - 20 \][/tex]
This concludes our detailed breakdown of the polynomial expression given.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.