Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the probability of drawing a second white ball given that the first ball drawn was white, we will use conditional probability. This problem can be framed as finding [tex]\( P(B|A) \)[/tex], where:
- [tex]\( A \)[/tex] is the event of drawing a white ball first.
- [tex]\( B \)[/tex] is the event of drawing a white ball second.
We need to find [tex]\( P(B|A) \)[/tex], which is the conditional probability of [tex]\( B \)[/tex] given [tex]\( A \)[/tex]. According to the formula for conditional probability:
[tex]\[ P(B|A) = \frac{P(A \text{ and } B)}{P(A)} \][/tex]
We have the following information provided in the problem:
- [tex]\( P(A \text{ and } B) = \frac{1}{5} \)[/tex] (the probability of drawing two white balls consecutively).
- [tex]\( P(A) = \frac{7}{15} \)[/tex] (the probability of drawing a white ball first).
Now, substituting these values into the formula for conditional probability:
[tex]\[ P(B|A) = \frac{\frac{1}{5}}{\frac{7}{15}} \][/tex]
This simplifies to:
[tex]\[ P(B|A) = \frac{1/5}{7/15} = \frac{1/5 \times 15/7}{1} = \frac{15}{35} = \frac{3}{7} \][/tex]
Hence, the probability of drawing a second white ball given that the first ball drawn was white is [tex]\(\frac{3}{7}\)[/tex].
Therefore, the correct answer is [tex]\(\frac{3}{7}\)[/tex].
- [tex]\( A \)[/tex] is the event of drawing a white ball first.
- [tex]\( B \)[/tex] is the event of drawing a white ball second.
We need to find [tex]\( P(B|A) \)[/tex], which is the conditional probability of [tex]\( B \)[/tex] given [tex]\( A \)[/tex]. According to the formula for conditional probability:
[tex]\[ P(B|A) = \frac{P(A \text{ and } B)}{P(A)} \][/tex]
We have the following information provided in the problem:
- [tex]\( P(A \text{ and } B) = \frac{1}{5} \)[/tex] (the probability of drawing two white balls consecutively).
- [tex]\( P(A) = \frac{7}{15} \)[/tex] (the probability of drawing a white ball first).
Now, substituting these values into the formula for conditional probability:
[tex]\[ P(B|A) = \frac{\frac{1}{5}}{\frac{7}{15}} \][/tex]
This simplifies to:
[tex]\[ P(B|A) = \frac{1/5}{7/15} = \frac{1/5 \times 15/7}{1} = \frac{15}{35} = \frac{3}{7} \][/tex]
Hence, the probability of drawing a second white ball given that the first ball drawn was white is [tex]\(\frac{3}{7}\)[/tex].
Therefore, the correct answer is [tex]\(\frac{3}{7}\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.