Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Line [tex]$AB$[/tex] passes through [tex]$A(-3,0)$[/tex] and [tex]$B(-6,5)$[/tex]. What is the equation of the line that passes through the origin and is parallel to line [tex]$AB$[/tex]?

A. [tex]$5x - 3y = 0$[/tex]
B. [tex]$-x + 3y = 0$[/tex]
C. [tex]$-5x - 3y = 0$[/tex]
D. [tex]$3x + 5y = 0$[/tex]
E. [tex]$-3x + 5y = 0$[/tex]

Sagot :

To find the equation of the line that passes through the origin (0, 0) and is parallel to the line that passes through points [tex]\( A(-3, 0) \)[/tex] and [tex]\( B(-6, 5) \)[/tex], follow these steps:

### Step 1: Find the Slope of Line [tex]\(AB\)[/tex]
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1,y_1)\)[/tex] and [tex]\((x_2,y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates of points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ m = \frac{5 - 0}{-6 - (-3)} \][/tex]
[tex]\[ m = \frac{5}{-6 + 3} \][/tex]
[tex]\[ m = \frac{5}{-3} = -\frac{5}{3} \][/tex]

### Step 2: Determine the Equation of the Line through the Origin
The slope of the line passing through the origin and parallel to line [tex]\(AB\)[/tex] will be the same as the slope of line [tex]\(AB\)[/tex].

The slope-intercept form of a line is:
[tex]\[ y = mx + c \][/tex]
Since the line passes through the origin (0, 0), the y-intercept [tex]\( c \)[/tex] is 0. Thus, the equation is:
[tex]\[ y = -\frac{5}{3}x \][/tex]

### Step 3: Convert to Standard Form
To convert [tex]\( y = -\frac{5}{3}x \)[/tex] to standard form [tex]\( Ax + By = C \)[/tex]:
1. Multiply both sides by 3 to eliminate the fraction:
[tex]\[ 3y = -5x \][/tex]
2. Rearrange all terms to one side to get the equation in standard form:
[tex]\[ 5x + 3y = 0 \][/tex]

### Conclusion
The correct equation of the line that passes through the origin and is parallel to the line passing through points [tex]\( A(-3, 0) \)[/tex] and [tex]\( B(-6, 5) \)[/tex] is:
[tex]\[ 5x + 3y = 0 \][/tex]
This corresponds to option [tex]\( \boxed{A} \)[/tex].