Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Which weak acid would be best to use when preparing a buffer solution with a pH of 8.60?

A. an acid with [tex]K_a = 4.0 \times 10^{-7}[/tex]
B. an acid with [tex]K_a = 2.6 \times 10^{-9}[/tex]
C. an acid with [tex]K_a = 3.2 \times 10^{-5}[/tex]
D. an acid with [tex]K_a = 5.0 \times 10^{-6}[/tex]
E. an acid with [tex]K_a = 1.6 \times 10^{-10}[/tex]
F. an acid with [tex]K_a = 0.00040[/tex]


Sagot :

To determine which weak acid would be best for preparing a buffer solution with a pH of 8.60, we need to consider the [tex]\(pK_a\)[/tex] values of the given acids. A buffer solution works best when the pH is close to the [tex]\(pK_a\)[/tex] of the acid. The [tex]\(pK_a\)[/tex] is related to the acid dissociation constant [tex]\(K_a\)[/tex] through the following formula:

[tex]\[ pK_a = -\log_{10}(K_a) \][/tex]

Let's calculate the [tex]\(pK_a\)[/tex] values for each provided [tex]\(K_a\)[/tex]:

1. For [tex]\(K_a = 4.0 \times 10^{-7}\)[/tex]:
[tex]\[ pK_a = -\log_{10}(4.0 \times 10^{-7}) \approx 6.40 \][/tex]

2. For [tex]\(K_a = 2.6 \times 10^{-9}\)[/tex]:
[tex]\[ pK_a = -\log_{10}(2.6 \times 10^{-9}) \approx 8.59 \][/tex]

3. For [tex]\(K_a = 3.2 \times 10^{-5}\)[/tex]:
[tex]\[ pK_a = -\log_{10}(3.2 \times 10^{-5}) \approx 4.49 \][/tex]

4. For [tex]\(K_a = 5.0 \times 10^{-6}\)[/tex]:
[tex]\[ pK_a = -\log_{10}(5.0 \times 10^{-6}) \approx 5.30 \][/tex]

5. For [tex]\(K_a = 1.6 \times 10^{-10}\)[/tex]:
[tex]\[ pK_a = -\log_{10}(1.6 \times 10^{-10}) \approx 9.80 \][/tex]

6. For [tex]\(K_a = 0.00040\)[/tex]:
[tex]\[ pK_a = -\log_{10}(0.00040) \approx 3.40 \][/tex]

Next, we compare these [tex]\(pK_a\)[/tex] values to the target pH of 8.60. The best acid for the buffer solution will be the one with a [tex]\(pK_a\)[/tex] closest to 8.60.

Calculating the absolute differences:

[tex]\[ \text{Difference for } K_a = 4.0 \times 10^{-7}: |6.40 - 8.60| = 2.20 \][/tex]
[tex]\[ \text{Difference for } K_a = 2.6 \times 10^{-9}: |8.59 - 8.60| = 0.01 \][/tex]
[tex]\[ \text{Difference for } K_a = 3.2 \times 10^{-5}: |4.49 - 8.60| = 4.11 \][/tex]
[tex]\[ \text{Difference for } K_a = 5.0 \times 10^{-6}: |5.30 - 8.60| = 3.30 \][/tex]
[tex]\[ \text{Difference for } K_a = 1.6 \times 10^{-10}: |9.80 - 8.60| = 1.20 \][/tex]
[tex]\[ \text{Difference for } K_a = 0.00040: |3.40 - 8.60| = 5.20 \][/tex]

From these differences, [tex]\(K_a = 2.6 \times 10^{-9}\)[/tex] has the smallest difference of [tex]\(0.01\)[/tex], meaning its [tex]\(pK_a\)[/tex] (8.59) is closest to the desired pH of 8.60.

Therefore, the best weak acid to use when preparing a buffer solution with a pH of 8.60 is the acid with [tex]\(K_a = 2.6 \times 10^{-9}\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.