At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's solve the equation step-by-step:
Given:
[tex]\[\log_2 4 + \log_2 4 + \log_2 x = 6\][/tex]
1. Simplify the logarithmic terms:
We know that:
[tex]\[\log_2 4 = 2\][/tex]
because [tex]\(2^2 = 4\)[/tex].
So, we can replace [tex]\(\log_2 4\)[/tex] with 2:
[tex]\[2 + 2 + \log_2 x = 6\][/tex]
2. Combine the constants:
Adding the constant terms:
[tex]\[2 + 2 = 4\][/tex]
So now the equation becomes:
[tex]\[4 + \log_2 x = 6\][/tex]
3. Isolate the logarithmic term:
To isolate [tex]\(\log_2 x\)[/tex], subtract 4 from both sides of the equation:
[tex]\[\log_2 x = 6 - 4\][/tex]
4. Simplify the right side:
[tex]\[\log_2 x = 2\][/tex]
5. Rewrite the logarithmic equation in exponential form:
By definition of logarithms, if [tex]\(\log_b y = z\)[/tex], then [tex]\(b^z = y\)[/tex]. Thus:
[tex]\[2^2 = x\][/tex]
6. Calculate the value:
[tex]\(2^2 = 4\)[/tex].
Therefore, the value of [tex]\(x\)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
Given:
[tex]\[\log_2 4 + \log_2 4 + \log_2 x = 6\][/tex]
1. Simplify the logarithmic terms:
We know that:
[tex]\[\log_2 4 = 2\][/tex]
because [tex]\(2^2 = 4\)[/tex].
So, we can replace [tex]\(\log_2 4\)[/tex] with 2:
[tex]\[2 + 2 + \log_2 x = 6\][/tex]
2. Combine the constants:
Adding the constant terms:
[tex]\[2 + 2 = 4\][/tex]
So now the equation becomes:
[tex]\[4 + \log_2 x = 6\][/tex]
3. Isolate the logarithmic term:
To isolate [tex]\(\log_2 x\)[/tex], subtract 4 from both sides of the equation:
[tex]\[\log_2 x = 6 - 4\][/tex]
4. Simplify the right side:
[tex]\[\log_2 x = 2\][/tex]
5. Rewrite the logarithmic equation in exponential form:
By definition of logarithms, if [tex]\(\log_b y = z\)[/tex], then [tex]\(b^z = y\)[/tex]. Thus:
[tex]\[2^2 = x\][/tex]
6. Calculate the value:
[tex]\(2^2 = 4\)[/tex].
Therefore, the value of [tex]\(x\)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.