Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Which matrix multiplication is possible?

A. [tex]\left[\begin{array}{ll}0 & 3\end{array}\right] \times \left[\begin{array}{ll}1 & -4\end{array}\right][/tex]

B. [tex]\left[\begin{array}{c}3 \\ -2\end{array}\right] \times \left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right][/tex]

C. [tex]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \times \left[\begin{array}{ll}3 & 0\end{array}\right][/tex]

D. [tex]\left[\begin{array}{c}1 \\ -1\end{array}\right] \times \left[\begin{array}{ll}0 & 4\end{array}\right][/tex]


Sagot :

To determine which matrix multiplication is possible, we need to check the dimensions of the matrices involved in each multiplication. Specifically, for matrix multiplication [tex]\(A (m \times n)\)[/tex] and [tex]\(B (p \times q)\)[/tex] to be possible, the number of columns in [tex]\(A\)[/tex] (which is [tex]\(n\)[/tex]) must equal the number of rows in [tex]\(B\)[/tex] (which is [tex]\(p\)[/tex]).

Let's examine each pair of matrices:

1. [tex]\(\left[\begin{array}{ll}0 & 3\end{array}\right] \times\left[\begin{array}{ll}1 & -4\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{ll}0 & 3\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- The second matrix [tex]\(\left[\begin{array}{ll}1 & -4\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (2) must equal the number of rows in the second matrix (1). Here, [tex]\(2 \neq 1\)[/tex], so this multiplication is not possible.

2. [tex]\(\left[\begin{array}{c}3 \\ -2\end{array}\right] \times\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{c}3 \\ -2\end{array}\right]\)[/tex] is a [tex]\(2 \times 1\)[/tex] matrix (2 rows, 1 column).
- The second matrix [tex]\(\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]\)[/tex] is a [tex]\(2 \times 2\)[/tex] matrix (2 rows, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (1) must equal the number of rows in the second matrix (2). Here, [tex]\(1 \neq 2\)[/tex], so this multiplication is not possible.

3. [tex]\(\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{ll}3 & 0\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\)[/tex] is a [tex]\(2 \times 2\)[/tex] matrix (2 rows, 2 columns).
- The second matrix [tex]\(\left[\begin{array}{ll}3 & 0\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (2) must equal the number of rows in the second matrix (1). Here, [tex]\(2 \neq 1\)[/tex], so this multiplication is not possible.

4. [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right] \times\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right]\)[/tex] is a [tex]\(2 \times 1\)[/tex] matrix (2 rows, 1 column).
- The second matrix [tex]\(\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (1) must equal the number of rows in the second matrix (1). Here, [tex]\(1 = 1\)[/tex], so this multiplication is possible.

Thus, the only matrix multiplication that is possible is [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right] \times\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex].