Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Which matrix multiplication is possible?

A. [tex]\left[\begin{array}{ll}0 & 3\end{array}\right] \times \left[\begin{array}{ll}1 & -4\end{array}\right][/tex]

B. [tex]\left[\begin{array}{c}3 \\ -2\end{array}\right] \times \left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right][/tex]

C. [tex]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \times \left[\begin{array}{ll}3 & 0\end{array}\right][/tex]

D. [tex]\left[\begin{array}{c}1 \\ -1\end{array}\right] \times \left[\begin{array}{ll}0 & 4\end{array}\right][/tex]


Sagot :

To determine which matrix multiplication is possible, we need to check the dimensions of the matrices involved in each multiplication. Specifically, for matrix multiplication [tex]\(A (m \times n)\)[/tex] and [tex]\(B (p \times q)\)[/tex] to be possible, the number of columns in [tex]\(A\)[/tex] (which is [tex]\(n\)[/tex]) must equal the number of rows in [tex]\(B\)[/tex] (which is [tex]\(p\)[/tex]).

Let's examine each pair of matrices:

1. [tex]\(\left[\begin{array}{ll}0 & 3\end{array}\right] \times\left[\begin{array}{ll}1 & -4\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{ll}0 & 3\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- The second matrix [tex]\(\left[\begin{array}{ll}1 & -4\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (2) must equal the number of rows in the second matrix (1). Here, [tex]\(2 \neq 1\)[/tex], so this multiplication is not possible.

2. [tex]\(\left[\begin{array}{c}3 \\ -2\end{array}\right] \times\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{c}3 \\ -2\end{array}\right]\)[/tex] is a [tex]\(2 \times 1\)[/tex] matrix (2 rows, 1 column).
- The second matrix [tex]\(\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]\)[/tex] is a [tex]\(2 \times 2\)[/tex] matrix (2 rows, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (1) must equal the number of rows in the second matrix (2). Here, [tex]\(1 \neq 2\)[/tex], so this multiplication is not possible.

3. [tex]\(\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{ll}3 & 0\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\)[/tex] is a [tex]\(2 \times 2\)[/tex] matrix (2 rows, 2 columns).
- The second matrix [tex]\(\left[\begin{array}{ll}3 & 0\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (2) must equal the number of rows in the second matrix (1). Here, [tex]\(2 \neq 1\)[/tex], so this multiplication is not possible.

4. [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right] \times\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right]\)[/tex] is a [tex]\(2 \times 1\)[/tex] matrix (2 rows, 1 column).
- The second matrix [tex]\(\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (1) must equal the number of rows in the second matrix (1). Here, [tex]\(1 = 1\)[/tex], so this multiplication is possible.

Thus, the only matrix multiplication that is possible is [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right] \times\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.