Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the problem step-by-step:
1. Understand the given information:
- The angle between the arms of the divider is 15 degrees.
- The length of each arm (radius of the sector) is 8.4 cm.
- We are to use [tex]\(\pi = \frac{22}{7}\)[/tex].
2. Convert the angle from degrees to radians:
Generally, to convert an angle from degrees to radians, we use the conversion factor:
[tex]\[ \text{angle in radians} = \text{angle in degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
Here, [tex]\(\pi = \frac{22}{7}\)[/tex] and the angle is 15 degrees. Plugging in these values:
[tex]\[ \text{angle in radians} = 15 \times \left( \frac{ \frac{22}{7} }{ 180 } \right) = 15 \times \frac{22}{ 1260 } \][/tex]
Simplifying [tex]\( \frac{22}{1260} \)[/tex]:
[tex]\[ \frac{22}{1260} = \frac{1}{57.27} \][/tex]
So,
[tex]\[ \text{angle in radians} = 15 \times \frac{1}{57.27} \approx 0.2619047619047619 \text{ radians} \][/tex]
3. Calculate the area of the sector:
The formula to calculate the area of a sector when the angle is in radians is:
[tex]\[ \text{Area} = \frac{1}{2} \times r^2 \times \theta \][/tex]
where [tex]\( r \)[/tex] is the radius, and [tex]\( \theta \)[/tex] is the angle in radians. Here, [tex]\( r = 8.4 \, \text{cm} \)[/tex] and [tex]\( \theta \approx 0.2619 \, \text{radians} \)[/tex]. Plugging in these values:
[tex]\[ \text{Area} = \frac{1}{2} \times (8.4)^2 \times 0.2619 \][/tex]
First, compute [tex]\( (8.4)^2 \)[/tex]:
[tex]\[ (8.4)^2 = 70.56 \][/tex]
Then, compute:
[tex]\[ \frac{1}{2} \times 70.56 \times 0.2619 \approx 9.24 \, \text{cm}^2 \][/tex]
4. Conclude the answer:
So, the area of the sector formed by the pair of divider with an arm length of 8.4 cm and an angle of 15 degrees is approximately 9.24 square centimeters.
1. Understand the given information:
- The angle between the arms of the divider is 15 degrees.
- The length of each arm (radius of the sector) is 8.4 cm.
- We are to use [tex]\(\pi = \frac{22}{7}\)[/tex].
2. Convert the angle from degrees to radians:
Generally, to convert an angle from degrees to radians, we use the conversion factor:
[tex]\[ \text{angle in radians} = \text{angle in degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
Here, [tex]\(\pi = \frac{22}{7}\)[/tex] and the angle is 15 degrees. Plugging in these values:
[tex]\[ \text{angle in radians} = 15 \times \left( \frac{ \frac{22}{7} }{ 180 } \right) = 15 \times \frac{22}{ 1260 } \][/tex]
Simplifying [tex]\( \frac{22}{1260} \)[/tex]:
[tex]\[ \frac{22}{1260} = \frac{1}{57.27} \][/tex]
So,
[tex]\[ \text{angle in radians} = 15 \times \frac{1}{57.27} \approx 0.2619047619047619 \text{ radians} \][/tex]
3. Calculate the area of the sector:
The formula to calculate the area of a sector when the angle is in radians is:
[tex]\[ \text{Area} = \frac{1}{2} \times r^2 \times \theta \][/tex]
where [tex]\( r \)[/tex] is the radius, and [tex]\( \theta \)[/tex] is the angle in radians. Here, [tex]\( r = 8.4 \, \text{cm} \)[/tex] and [tex]\( \theta \approx 0.2619 \, \text{radians} \)[/tex]. Plugging in these values:
[tex]\[ \text{Area} = \frac{1}{2} \times (8.4)^2 \times 0.2619 \][/tex]
First, compute [tex]\( (8.4)^2 \)[/tex]:
[tex]\[ (8.4)^2 = 70.56 \][/tex]
Then, compute:
[tex]\[ \frac{1}{2} \times 70.56 \times 0.2619 \approx 9.24 \, \text{cm}^2 \][/tex]
4. Conclude the answer:
So, the area of the sector formed by the pair of divider with an arm length of 8.4 cm and an angle of 15 degrees is approximately 9.24 square centimeters.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.