At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

15. The two arms of a pair of dividers are spread so that the angle between them is [tex]\theta[/tex]. Find the area of the sector formed if the length of each arm is 8.4 cm.

(Take [tex]\pi=\frac{22}{7}[/tex].)


Sagot :

Let's solve the problem step-by-step:

1. Understand the given information:
- The angle between the arms of the divider is 15 degrees.
- The length of each arm (radius of the sector) is 8.4 cm.
- We are to use [tex]\(\pi = \frac{22}{7}\)[/tex].

2. Convert the angle from degrees to radians:
Generally, to convert an angle from degrees to radians, we use the conversion factor:
[tex]\[ \text{angle in radians} = \text{angle in degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
Here, [tex]\(\pi = \frac{22}{7}\)[/tex] and the angle is 15 degrees. Plugging in these values:
[tex]\[ \text{angle in radians} = 15 \times \left( \frac{ \frac{22}{7} }{ 180 } \right) = 15 \times \frac{22}{ 1260 } \][/tex]
Simplifying [tex]\( \frac{22}{1260} \)[/tex]:
[tex]\[ \frac{22}{1260} = \frac{1}{57.27} \][/tex]
So,
[tex]\[ \text{angle in radians} = 15 \times \frac{1}{57.27} \approx 0.2619047619047619 \text{ radians} \][/tex]

3. Calculate the area of the sector:
The formula to calculate the area of a sector when the angle is in radians is:
[tex]\[ \text{Area} = \frac{1}{2} \times r^2 \times \theta \][/tex]
where [tex]\( r \)[/tex] is the radius, and [tex]\( \theta \)[/tex] is the angle in radians. Here, [tex]\( r = 8.4 \, \text{cm} \)[/tex] and [tex]\( \theta \approx 0.2619 \, \text{radians} \)[/tex]. Plugging in these values:
[tex]\[ \text{Area} = \frac{1}{2} \times (8.4)^2 \times 0.2619 \][/tex]
First, compute [tex]\( (8.4)^2 \)[/tex]:
[tex]\[ (8.4)^2 = 70.56 \][/tex]
Then, compute:
[tex]\[ \frac{1}{2} \times 70.56 \times 0.2619 \approx 9.24 \, \text{cm}^2 \][/tex]

4. Conclude the answer:
So, the area of the sector formed by the pair of divider with an arm length of 8.4 cm and an angle of 15 degrees is approximately 9.24 square centimeters.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.