Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve for the height of the chest, we need to use the given information and the formula for the volume of a rectangular prism.
1. Given Information:
- Width ([tex]\(w\)[/tex]) of the chest: 16 inches
- Volume ([tex]\(V\)[/tex]) of the chest: 4096 cubic inches
- Length ([tex]\(l\)[/tex]) is 4 times the height ([tex]\(h\)[/tex])
2. Formulation:
- The volume [tex]\(V\)[/tex] of a rectangular prism is given by:
[tex]\[ V = l \times w \times h \][/tex]
- According to the problem, the length [tex]\(l\)[/tex] is [tex]\(4 \times h\)[/tex]. Therefore, the equation becomes:
[tex]\[ V = (4h) \times 16 \times h \][/tex]
- Substitute the given volume, 4096 cubic inches:
[tex]\[ 4096 = 4h \times 16 \times h \][/tex]
3. Simplification:
- Simplifying inside the equation:
[tex]\[ 4096 = 64h^2 \][/tex]
- Divide both sides by 64 to isolate [tex]\(h^2\)[/tex]:
[tex]\[ h^2 = \frac{4096}{64} \][/tex]
[tex]\[ h^2 = 64 \][/tex]
4. Solving for [tex]\(h\)[/tex]:
- Take the square root of both sides to solve for [tex]\(h\)[/tex]:
[tex]\[ h = \sqrt{64} \][/tex]
- Considering both positive and negative solutions:
[tex]\[ h = \pm 8 \][/tex]
Given that a physical dimension like height must be a positive value, we discard the negative solution.
Therefore, the height of the chest is:
[tex]\[ \boxed{8} \][/tex]
1. Given Information:
- Width ([tex]\(w\)[/tex]) of the chest: 16 inches
- Volume ([tex]\(V\)[/tex]) of the chest: 4096 cubic inches
- Length ([tex]\(l\)[/tex]) is 4 times the height ([tex]\(h\)[/tex])
2. Formulation:
- The volume [tex]\(V\)[/tex] of a rectangular prism is given by:
[tex]\[ V = l \times w \times h \][/tex]
- According to the problem, the length [tex]\(l\)[/tex] is [tex]\(4 \times h\)[/tex]. Therefore, the equation becomes:
[tex]\[ V = (4h) \times 16 \times h \][/tex]
- Substitute the given volume, 4096 cubic inches:
[tex]\[ 4096 = 4h \times 16 \times h \][/tex]
3. Simplification:
- Simplifying inside the equation:
[tex]\[ 4096 = 64h^2 \][/tex]
- Divide both sides by 64 to isolate [tex]\(h^2\)[/tex]:
[tex]\[ h^2 = \frac{4096}{64} \][/tex]
[tex]\[ h^2 = 64 \][/tex]
4. Solving for [tex]\(h\)[/tex]:
- Take the square root of both sides to solve for [tex]\(h\)[/tex]:
[tex]\[ h = \sqrt{64} \][/tex]
- Considering both positive and negative solutions:
[tex]\[ h = \pm 8 \][/tex]
Given that a physical dimension like height must be a positive value, we discard the negative solution.
Therefore, the height of the chest is:
[tex]\[ \boxed{8} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.