Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve for the height of the chest, we need to use the given information and the formula for the volume of a rectangular prism.
1. Given Information:
- Width ([tex]\(w\)[/tex]) of the chest: 16 inches
- Volume ([tex]\(V\)[/tex]) of the chest: 4096 cubic inches
- Length ([tex]\(l\)[/tex]) is 4 times the height ([tex]\(h\)[/tex])
2. Formulation:
- The volume [tex]\(V\)[/tex] of a rectangular prism is given by:
[tex]\[ V = l \times w \times h \][/tex]
- According to the problem, the length [tex]\(l\)[/tex] is [tex]\(4 \times h\)[/tex]. Therefore, the equation becomes:
[tex]\[ V = (4h) \times 16 \times h \][/tex]
- Substitute the given volume, 4096 cubic inches:
[tex]\[ 4096 = 4h \times 16 \times h \][/tex]
3. Simplification:
- Simplifying inside the equation:
[tex]\[ 4096 = 64h^2 \][/tex]
- Divide both sides by 64 to isolate [tex]\(h^2\)[/tex]:
[tex]\[ h^2 = \frac{4096}{64} \][/tex]
[tex]\[ h^2 = 64 \][/tex]
4. Solving for [tex]\(h\)[/tex]:
- Take the square root of both sides to solve for [tex]\(h\)[/tex]:
[tex]\[ h = \sqrt{64} \][/tex]
- Considering both positive and negative solutions:
[tex]\[ h = \pm 8 \][/tex]
Given that a physical dimension like height must be a positive value, we discard the negative solution.
Therefore, the height of the chest is:
[tex]\[ \boxed{8} \][/tex]
1. Given Information:
- Width ([tex]\(w\)[/tex]) of the chest: 16 inches
- Volume ([tex]\(V\)[/tex]) of the chest: 4096 cubic inches
- Length ([tex]\(l\)[/tex]) is 4 times the height ([tex]\(h\)[/tex])
2. Formulation:
- The volume [tex]\(V\)[/tex] of a rectangular prism is given by:
[tex]\[ V = l \times w \times h \][/tex]
- According to the problem, the length [tex]\(l\)[/tex] is [tex]\(4 \times h\)[/tex]. Therefore, the equation becomes:
[tex]\[ V = (4h) \times 16 \times h \][/tex]
- Substitute the given volume, 4096 cubic inches:
[tex]\[ 4096 = 4h \times 16 \times h \][/tex]
3. Simplification:
- Simplifying inside the equation:
[tex]\[ 4096 = 64h^2 \][/tex]
- Divide both sides by 64 to isolate [tex]\(h^2\)[/tex]:
[tex]\[ h^2 = \frac{4096}{64} \][/tex]
[tex]\[ h^2 = 64 \][/tex]
4. Solving for [tex]\(h\)[/tex]:
- Take the square root of both sides to solve for [tex]\(h\)[/tex]:
[tex]\[ h = \sqrt{64} \][/tex]
- Considering both positive and negative solutions:
[tex]\[ h = \pm 8 \][/tex]
Given that a physical dimension like height must be a positive value, we discard the negative solution.
Therefore, the height of the chest is:
[tex]\[ \boxed{8} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.