Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve for the height of the chest, we need to use the given information and the formula for the volume of a rectangular prism.
1. Given Information:
- Width ([tex]\(w\)[/tex]) of the chest: 16 inches
- Volume ([tex]\(V\)[/tex]) of the chest: 4096 cubic inches
- Length ([tex]\(l\)[/tex]) is 4 times the height ([tex]\(h\)[/tex])
2. Formulation:
- The volume [tex]\(V\)[/tex] of a rectangular prism is given by:
[tex]\[ V = l \times w \times h \][/tex]
- According to the problem, the length [tex]\(l\)[/tex] is [tex]\(4 \times h\)[/tex]. Therefore, the equation becomes:
[tex]\[ V = (4h) \times 16 \times h \][/tex]
- Substitute the given volume, 4096 cubic inches:
[tex]\[ 4096 = 4h \times 16 \times h \][/tex]
3. Simplification:
- Simplifying inside the equation:
[tex]\[ 4096 = 64h^2 \][/tex]
- Divide both sides by 64 to isolate [tex]\(h^2\)[/tex]:
[tex]\[ h^2 = \frac{4096}{64} \][/tex]
[tex]\[ h^2 = 64 \][/tex]
4. Solving for [tex]\(h\)[/tex]:
- Take the square root of both sides to solve for [tex]\(h\)[/tex]:
[tex]\[ h = \sqrt{64} \][/tex]
- Considering both positive and negative solutions:
[tex]\[ h = \pm 8 \][/tex]
Given that a physical dimension like height must be a positive value, we discard the negative solution.
Therefore, the height of the chest is:
[tex]\[ \boxed{8} \][/tex]
1. Given Information:
- Width ([tex]\(w\)[/tex]) of the chest: 16 inches
- Volume ([tex]\(V\)[/tex]) of the chest: 4096 cubic inches
- Length ([tex]\(l\)[/tex]) is 4 times the height ([tex]\(h\)[/tex])
2. Formulation:
- The volume [tex]\(V\)[/tex] of a rectangular prism is given by:
[tex]\[ V = l \times w \times h \][/tex]
- According to the problem, the length [tex]\(l\)[/tex] is [tex]\(4 \times h\)[/tex]. Therefore, the equation becomes:
[tex]\[ V = (4h) \times 16 \times h \][/tex]
- Substitute the given volume, 4096 cubic inches:
[tex]\[ 4096 = 4h \times 16 \times h \][/tex]
3. Simplification:
- Simplifying inside the equation:
[tex]\[ 4096 = 64h^2 \][/tex]
- Divide both sides by 64 to isolate [tex]\(h^2\)[/tex]:
[tex]\[ h^2 = \frac{4096}{64} \][/tex]
[tex]\[ h^2 = 64 \][/tex]
4. Solving for [tex]\(h\)[/tex]:
- Take the square root of both sides to solve for [tex]\(h\)[/tex]:
[tex]\[ h = \sqrt{64} \][/tex]
- Considering both positive and negative solutions:
[tex]\[ h = \pm 8 \][/tex]
Given that a physical dimension like height must be a positive value, we discard the negative solution.
Therefore, the height of the chest is:
[tex]\[ \boxed{8} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.