Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the formula for the [tex]\(n\)[/tex]th term of the given arithmetic sequence where the first few terms are [tex]\(a_1 = 8\)[/tex], [tex]\(a_2 = 4\)[/tex], [tex]\(a_3 = 0\)[/tex], and [tex]\(a_4 = -4\)[/tex], we need to follow these steps:
1. Identify the Common Difference [tex]\(d\)[/tex]:
The common difference [tex]\(d\)[/tex] in an arithmetic sequence can be found by subtracting any term from the term that follows it.
[tex]\[ d = a_2 - a_1 = 4 - 8 = -4 \][/tex]
2. Determine the General Formula for the [tex]\(n\)[/tex]th Term:
The general formula for the [tex]\(n\)[/tex]th term of an arithmetic sequence is given by:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
Here, [tex]\(a_1\)[/tex] is the first term, and [tex]\(d\)[/tex] is the common difference.
3. Substitute the Known Values:
We know [tex]\(a_1 = 8\)[/tex] and [tex]\(d = -4\)[/tex]. Substitute these values into the general formula.
[tex]\[ a_n = 8 + (n - 1) \cdot (-4) \][/tex]
4. Simplify the Expression:
Distribute the [tex]\((-4)\)[/tex] through the [tex]\((n - 1)\)[/tex]:
[tex]\[ a_n = 8 + (n - 1) \times (-4) \][/tex]
[tex]\[ a_n = 8 + (n \cdot -4 - 1 \cdot -4) \][/tex]
[tex]\[ a_n = 8 + (-4n + 4) \][/tex]
Combine like terms:
[tex]\[ a_n = 8 + 4 - 4n \][/tex]
[tex]\[ a_n = 12 - 4n \][/tex]
Thus, the formula for the [tex]\(n\)[/tex]th term in this arithmetic sequence is:
[tex]\[ a_n = 12 - 4n \][/tex]
So the final equation in the requested format is:
[tex]\[ a_n = 12 - 4n \][/tex]
1. Identify the Common Difference [tex]\(d\)[/tex]:
The common difference [tex]\(d\)[/tex] in an arithmetic sequence can be found by subtracting any term from the term that follows it.
[tex]\[ d = a_2 - a_1 = 4 - 8 = -4 \][/tex]
2. Determine the General Formula for the [tex]\(n\)[/tex]th Term:
The general formula for the [tex]\(n\)[/tex]th term of an arithmetic sequence is given by:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
Here, [tex]\(a_1\)[/tex] is the first term, and [tex]\(d\)[/tex] is the common difference.
3. Substitute the Known Values:
We know [tex]\(a_1 = 8\)[/tex] and [tex]\(d = -4\)[/tex]. Substitute these values into the general formula.
[tex]\[ a_n = 8 + (n - 1) \cdot (-4) \][/tex]
4. Simplify the Expression:
Distribute the [tex]\((-4)\)[/tex] through the [tex]\((n - 1)\)[/tex]:
[tex]\[ a_n = 8 + (n - 1) \times (-4) \][/tex]
[tex]\[ a_n = 8 + (n \cdot -4 - 1 \cdot -4) \][/tex]
[tex]\[ a_n = 8 + (-4n + 4) \][/tex]
Combine like terms:
[tex]\[ a_n = 8 + 4 - 4n \][/tex]
[tex]\[ a_n = 12 - 4n \][/tex]
Thus, the formula for the [tex]\(n\)[/tex]th term in this arithmetic sequence is:
[tex]\[ a_n = 12 - 4n \][/tex]
So the final equation in the requested format is:
[tex]\[ a_n = 12 - 4n \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.